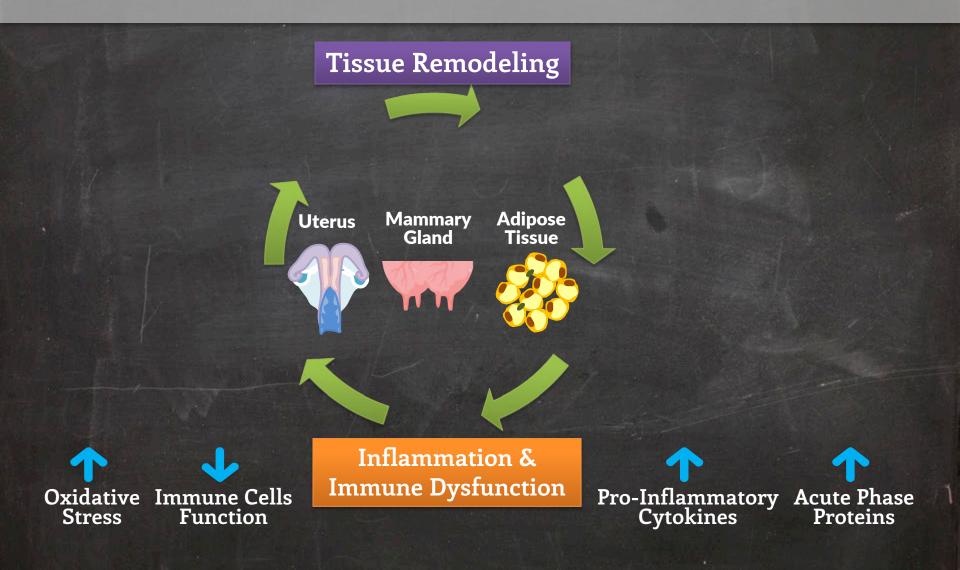
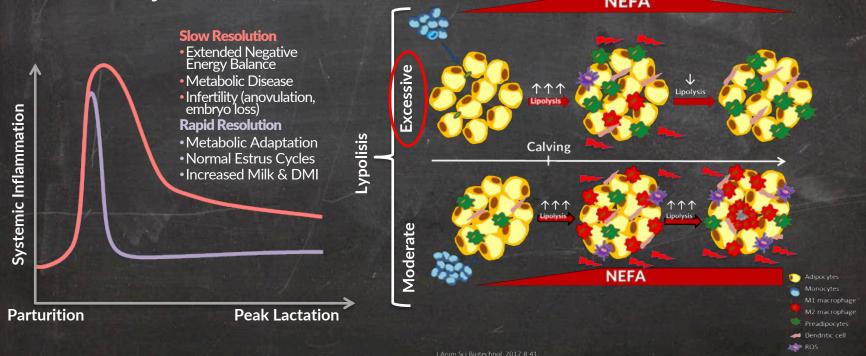


Supplementation of Omega-3 Fatty Acids MODULATES THE ENDOCANNABINOID SYSTEM IN PERIPARTUM DAIRY COWS

Dr. Maya Zachut Volcani Institute ARO, Israel

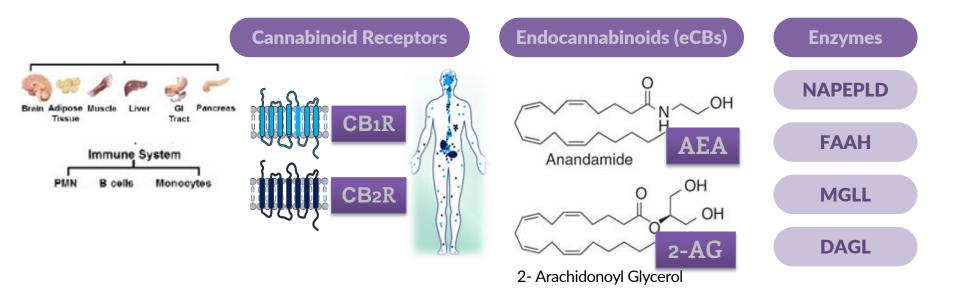

The Fatty Acid Forum sponsored by

SMART SOLUTIONS FOR INNOVATIVE DAIRIES


Supplementation of Omega-3 Fatty Acids Modulates the Endocannabinoid system in Peripartum Dairy Cows Subacute Inflammation in Transition Cows

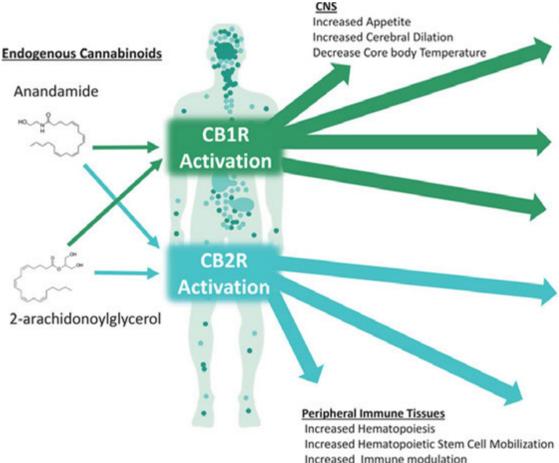
Supplementation of Omega-3 Fatty Acids Modulates the Endocannabinoid system in Peripartum Dairy Cows Excessive Lipolysis and Uncontrolled Inflammation

- Excessive lipolysis is related to adipose inflammation and adverse health outcome (Contreras et al., 2018)
- Sustained inflammation can suppress appetite, cause collateral tissue damage, and directly suppress milk production (Krogstad and Bradford, Hoards Dairyman, 2022)



Supplementation of Omega-3 Fatty Acids Modulates the Endocannabinoid system in Peripartum Dairy Cows Degree of Inflammation and Lipolysis

Can we affect the degree of inflammation and lipolysis postpartum?


Supplementation of Omega-3 Fatty Acids Modulates the Endocannabinoid system in Peripartum Dairy Cows The Endo-cannabinoid System (ECS)

- A central regulator of metabolism and energy homeostasis in mammals (Silvestri and Di Marzo, 2013)
- ECS is modulated by exposure to stress and has an effect on inflammatory responses (Morena et al., 2016)

Supplementation of Omega-3 Fatty Acids Modulates the Endocannabinoid system in Peripartum Dairy Cows Metabolic and Inflammatory Effects of ECS

Cardiovascular System

Decreased Heart Rate Decreased Blood Pressure Decreased Myocardial Contractility Increased Coronary Dilation

Skin

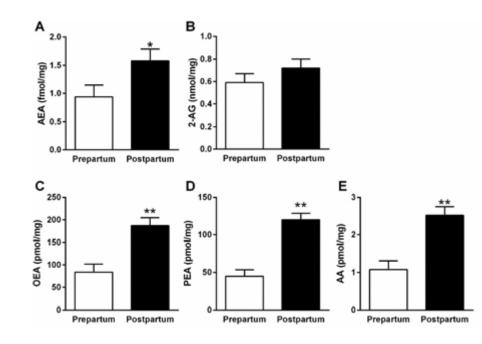
Increased Antioxidant Enzymes Decreased Lipid Peroxidation Decreased Keratinocyte Proliferation

Liver/Adipose Tissue/Skeletal Muscle

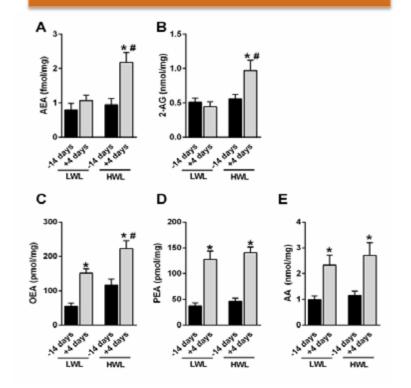
Increased Lipogenesis Increased insulin and leptin resistance Decreased Apdiponectin Decreased HDL Cholesterol Decreased Glucose Tolerance

Gastrointestinal Tract

Decreased LES Relaxation Decreased Gastric Acid Secretion Decreased Gastric Motility Decreased Visceral Pain


Leukocytes and Immune Cells

Decreased Activity of Mast Cells Increased/Decreased Activity of Macrophages, Neutrophils Decreased Th1 cytokines (IL-2, IFN, TNFα) Increased Th2 cytokines (IL-5, IL-10)

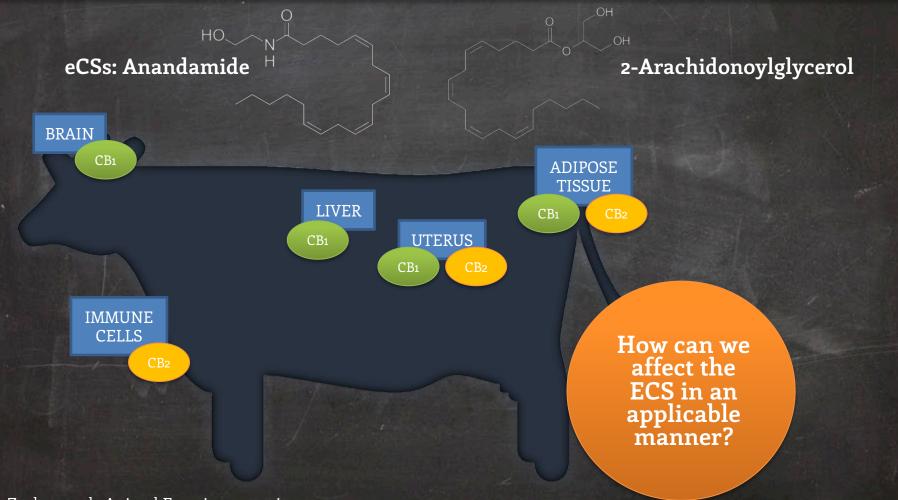

Page et al., Circulation, 2020

Supplementation of Omega-3 Fatty Acids Modulates the Endocannabinoid system in Peripartum Dairy Cows Characterizing the ECS in Transition Dairy Cows

N-arachidonoylethanolamine (AEA) & 2-arachidonoylglycerol (2-AG) Oleoylethanolamide (OEA), palmitoylethanolamide (PEA), & arachidonic acid (AA) Tendency for increased gene expression of CNR1 and CNR2 in adipose of highlipolysis cows

Zachut et al., 2018

Supplementation of Omega-3 Fatty Acids Modulates the Endocannabinoid system in Peripartum Dairy Cows ECS

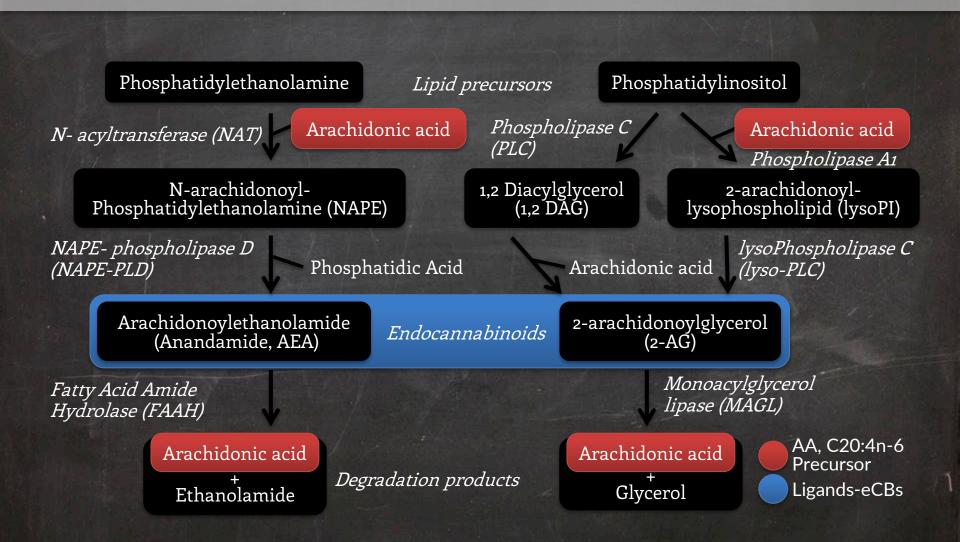

CB1 Sympathetic Nerve 1 Adipogene The ECS promotes energy conservation and reduces Lipid Droplet lipolysis in adipocytes Mitochondria Ceramide TAG 1 Mitochon MAG **Biogenesi** Lipolysis Vessel 1 Lipogenesi Glu GLUT4 Nucleus Glu PPARy ERK 1/2 Myers et al. Journal of Animal Science and Biotechnology (2021) 12:21 Journal of Animal Science and https://doi.org/10.1186/s40104-021-00549-3 Biotechnology PKC REVIEW **Open Access** TRPV1

Check for

A proposed modulatory role of the endocannabinoid system on adipose tissue metabolism and appetite in periparturient dairy cows

Supplementation of Omega-3 Fatty Acids Modulates the Endocannabinoid system in Peripartum Dairy Cows The ECS in Dairy Cows

Zachut et al., Animal Frontiers ,2022, in press



Supplementation of Omega-3 Fatty Acids Modulates the Endocannabinoid system in Peripartum Dairy Cows How Can Dietary Omega-3 Effect the ECS?

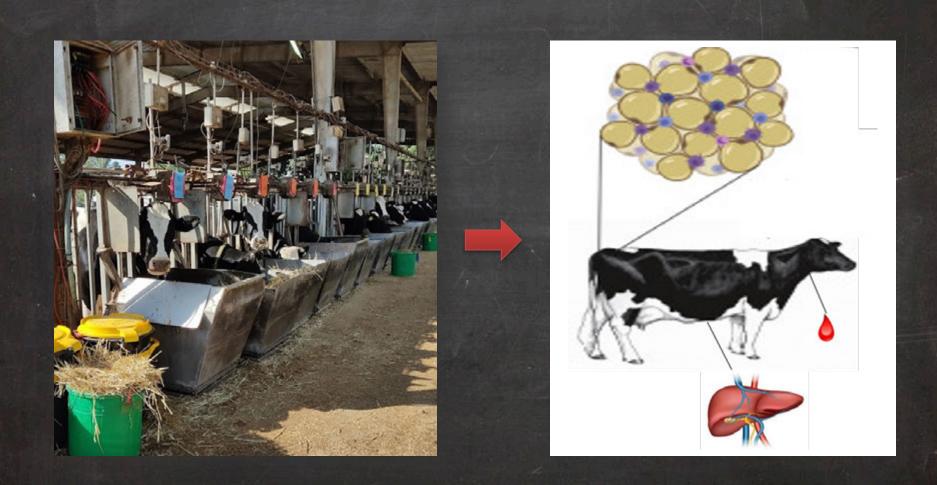
- C20:4n-6 (AA) is a main precursor of endocannabinoids.
- Supplementing n-3 can lower the n-6/n-3 ratio and reduce the availability of AA in membranes.
- Lower AA is expected to lower ECS activation.

Supplementation of Omega-3 Fatty Acids Modulates the Endocannabinoid system in Peripartum Dairy Cows ECS Biosynthesis

Supplementation of Omega-3 Fatty Acids Modulates the Endocannabinoid system in Peripartum Dairy Cows Research Hypothesis

J. Dairy Sci. 103:1049–1049 https://doi.org/10.3168/jds.2019-17328 © American Dairy Science Association[®], 2020.

Letter to the editor: Are the physiological effects of dietary n-3 fatty acids partly mediated by changes in activity of the endocannabinoid system in dairy cows?


Maya Zachut* 💿

Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization-Volcani Center, Rishon Lezion 7505101, Israel

> n-3 > lower ECS "tone" > affect metabolism and inflammation

Supplementation of Omega-3 Fatty Acids Modulates the Endocannabinoid system in Peripartum Dairy Cows Effects of n-3 Supplementation on ECS in Transition Dairy Cows

Supplementation of Omega-3 Fatty Acids Modulates the Endocannabinoid system in Peripartum Dairy Cows Excessive Lipolysis and Uncontrolled Inflammation

- 28 multiparous Holstein late pregnant dairy cows at individual feeding barn.
- Treatments started at 257 d of pregnancy until 21 d in lactation:
 - CTL (n = 14) basal diet, supplemented with encapsulated saturated fat at 240 and 560 g/d per cow prepartum and PP, respectively.
 - FLX (n = 14) the same basal diet, supplemented prepartum at 300 g/d per cow with encapsulated fat providing α-linolenic acid (ALA) at 56.1 g/d, and PP at 700 g/d per cow providing 131.0 g/d ALA from FLX.
- Blood, liver and adipose tissue were sampled postpartum for metabolic, inflammatory and ECS components.

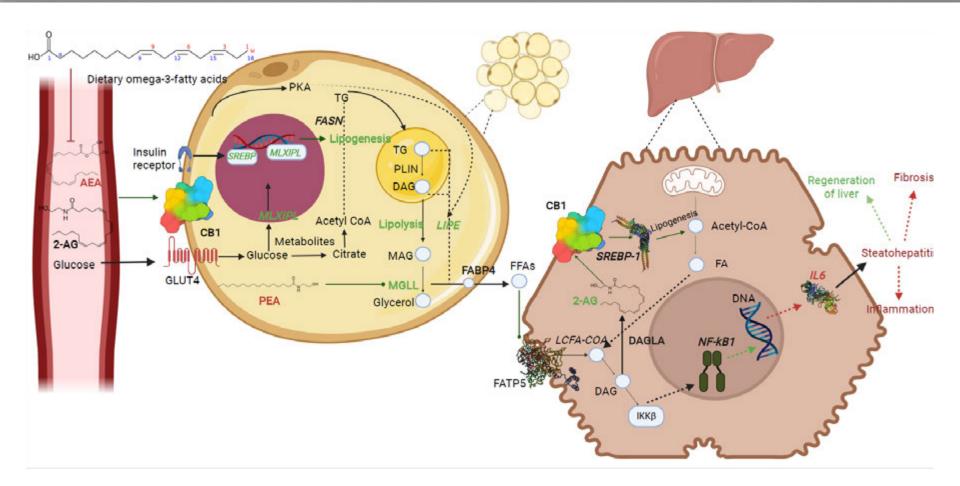
Supplementation of Omega-3 Fatty Acids Modulates the Endocannabinoid system in Peripartum Dairy Cows Results

- FLX increased plasma % ALA (3.9% vs. 1.8, SEM = 0.15, P < 0.0001).
- n-6/n-3 tended to decrease in FLX (24.2 vs. 9.8, SEM = 5.32, P = 0.07).
- Milk yields and fat corrected milk 4% were similar.
- DMI was 8.1% lower in the FLX than in CTL (P = 0.006).
- Calculated energy balance was not different between groups.
- No differences in plasma metabolites or cytokines.

Supplementation of Omega-3 Fatty Acids Modulates the Endocannabinoid system in Peripartum Dairy Cows n-3 Modulates eCBs in Plasma, Adipose & Liver

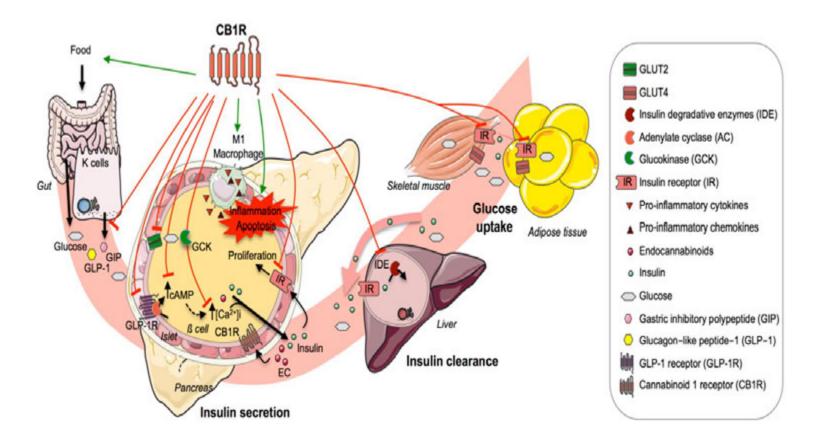
Plasma	CTL	FLX	SEM	P-value
2-AG ² ,(fmol/mL)	10.5	9.1	2.13	0.65
AA ³ , (pmol/mL)	581.2ª	324.3 ^b	61.18	0.02
AEA ⁴ , (fmol/mL)	232.2ª	116.8 ^b	31.82	0.03
PEA⁵, (fmol/mL)	0.4	0.0	0.31	0.33
OEA ⁶ , (fmol/mL)	34.1	34.3	9.66	0.99
Adipose Tissue	CTL	FLX	SEM	P-value
2-AG ² , (fmol/mL)	97.0	69.6	25.90	0.48
AA ³ , (pmol/mL)	1.3	1.0	0.16	0.24
AEA ⁴ , (fmol/mL)	0.7	0.7	0.17	0.97
PEA⁵, (fmol/mL)	16.1ª	6.2 ^b	2.53	0.02
OEA ⁶ , (fmol/mL)	125.2	100.2	15.90	0.30

	0.0210-0		State of the	
Liver	CTL	FLX	SEM	P-value
2-AG ² ,(fmol/mL)	287.6	497.8	72.03	0.07
AA ³ , (pmol/mL)	6.9	8.2	1.65	0.59
AEA ⁴ , (fmol/mL)	0.7	0.9	0.40	0.73
PEA ⁵ , (fmol/mL)	13.9	10.6	8.17	0.78
OEA ⁶ , (fmol/mL)	44.2	15.9	15.16	0.22



Supplementation of Omega-3 Fatty Acids Modulates the Endocannabinoid system in Peripartum Dairy Cows Components in Blood, Adipose, and Liver

- White blood cells: mRNA of CB1 (CNR1) tended to be lower in FLX
- PBMC: protein abundance of ECS enzyme MGLL was higher in FLX
- Adipose: mRNA of lipid metabolism genes were higher, and protein abundances of CB2 and MGLL tended to be higher in FLX
- Liver: interlukin-6 mRNA was lower in FLX than in CTL


Supplementation of Omega-3 Fatty Acids Modulates the Endocannabinoid system in Peripartum Dairy Cows n-3 Supplementation Modulates ECS in Blood, Adipose & Liver of Postpartum Cows

Kra et al, JASB, 2022 (in press)

Supplementation of Omega-3 Fatty Acids Modulates the Endocannabinoid system in Peripartum Dairy Cows The Next Frontier: Assessing Insulin Sensitivity & ECS

Abstracts #1424, #1425 ADSA 2022 Jourdan et al., 2020, Lipid Signaling and Metabolism. http://dx.doi.org/10.1016/B978-0-12-819404-1.00015-4

Supplementation of Omega-3 Fatty Acids Modulates the Endocannabinoid system in Peripartum Dairy Cows Summary

- Omega-3 supplementation was related to moderate alterations in ECS components, increased lipid metabolism in adipose and lower inflammation in liver
- Lower feed intake could be related to lower ECS tone; however, we did not observe increased lipolysis in FLX cows
- Supplementation of n-3 was related to tissue-dependent responses in ECS components in peripartum dairy cows

Supplementation of Omega-3 Fatty Acids Modulates the Endocannabinoid system in Peripartum Dairy Cows Excessive Lipolysis and Uncontrolled Inflammation

Livestock Science 242 (2020) 104302

Contents lists available at ScienceDirect

Livestock Science

journal homepage: www.elsevier.com/locate/livsci

The effects of omega-3 α -linolenic acid from flaxse high-yielding dairy cows on production, health, and

U. Moallem^{*}, H. Lehrer, L. Livshits, M. Zachut

Department of Ruminant Science, Institute of Animal Sciences, the Volcant Center, 68 HaMaccabim Road, Rishon

EFLX (n = 276) - pre- and postpartum diet extruded flaxseed supplement. **CTL; (n = 240)** - a diet with a different composition but a similar nutrient content. Incidence of health events by treatment groups in cows supplemented with extruded flaxseed.

LIVESTOC

Event	Treatment ¹			
	Control	EFLX	SEM	P-value
Without metritis,%	64.6 (155/240)	67.8 (187/276)		NS
Mild metritis,%	10.4 (25/240)	8.3 (23/276)		NS
Moderate metritis,%	12.1 (29/240)	14.9 (41/276)		NS
Severe metritis,%	12.9 (31/240)	9.1 (25/276)		0.15
Without ketosis,%	68.9 (166/240)	76.5 (211/276)		0.05
Mild ketosis,%	11.7 (28/240)	8.7 (24/276)		NS
Moderate ketosis,%	8.3 (20/240)	7.6 (21/276)		NS
Severe ketosis,%	10.8 (26/240)	7.2 (20/276)		0.03
Udder edema,%	5.8 (14/240)	2.2 (6/276)		0.03
Mastitis ² ,%	5.0 (11/240)	5.1 (14/276)		NS
Milk fever,%	0.8 (2/240)	1.1 (3/276)		NS
Mortality,%	4.6 (11/240)	0.7 (2/276)		0.005
BCS post-calving	3.45	3.65	0.03	< 0.0006
BCS peak lactation	2.84	3.03	0.03	< 0.0003
BW (kg)	648.7	660.8	0.5	< 0.0001

Supplementation of Omega-3 Fatty Acids Modulates the Endocannabinoid system in Peripartum Dairy Cows Take Home Message

- Omega-3 supplementation to transition cows modulates ECS in blood, liver and adipose tissue
- Further research will examine how manipulating ECS activity can affect physiology and immunometabolism in dairy cows

Supplementation of Omega-3 Fatty Acids Modulates the Endocannabinoid system in Peripartum Dairy Cows Special Thanks

Zachut lab: Gitit Kra, Jayasimha Rayalu Daddam Uzi Moallem, Volcani Institute, Israel BARD collaborators: Yossi Tam, HUJI and Andres G. Contreras, MSU

SMART SOLUTIONS FOR INNOVATIVE DAIRIES