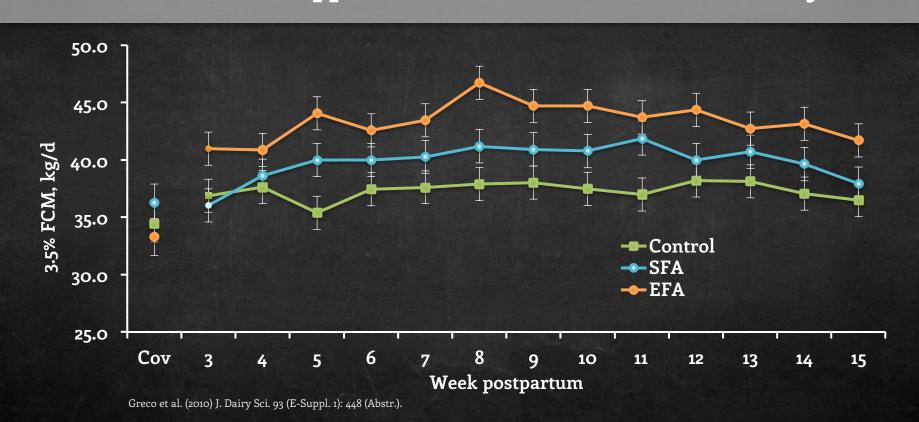


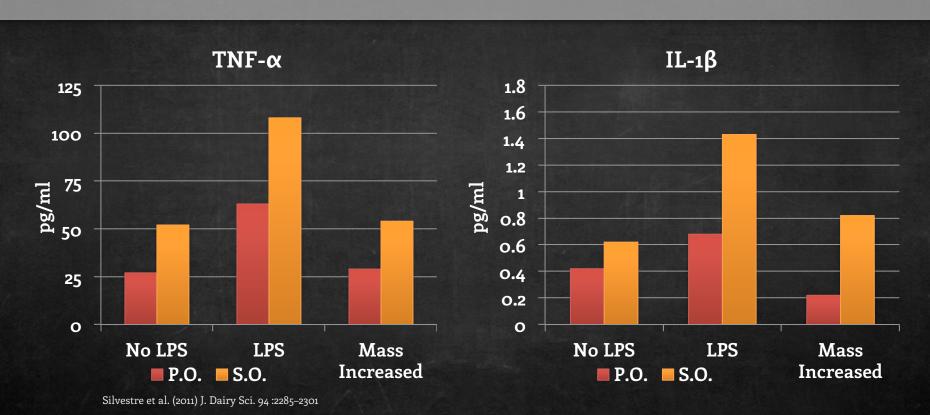
Effects of Altering the Omega-6 to Omega-3 Ratio on Lactation Performance & Immune Response

Jose Santos, Professor Department of Animal Sciences


Effects of Altering the Omega-6 to Omega-3 Ratio on Lactation Performance & Immune Response Effect of Supplemental FA on Performance of Dairy Cows

	Control	Cantual		P^{1}			
	Control	SFA	EFA -	T*P	Fat	FA	
DMI, kg/d	18.0 ± 0.7	19.3 ± 0.5	18.1 ± 0.6	0.01	0.42	0.12	
Milk, kg/d	31.7 ± 1.0	31.8 ± 0.9	34.1 ± 0.9	0.07	0.27	0.06	
Milk/DMI	1.83 ± 0.07	1.70 ± 0.06	1.95 ± 0.06	0.03	0.94	0.01	

 $^{1 -} T^*P \rightarrow$ Interaction between treatment and parity; Fat \rightarrow Control vs. SFA + EFA; FA \rightarrow SFA vs. EFA Greco et al. (2010) J. Dairy Sci. 93 (E-Suppl. 1): 448 (Abstr.).



Effects of Altering the Omega-6 to Omega-3 Ratio on Lactation Performance & Immune Response Effect of Supplemental FA on Performance of Dairy Cows

Effects of Altering the Omega-6 to Omega-3 Ratio on Lactation Performance & Immune Response Effect of Supplemental FA on Performance of Dairy Cows

Effects of Altering the Omega-6 to Omega-3 Ratio on Lactation Performance & Immune Response Objective

Evaluate the impacts of altering the ratio of n-6 to n-3 FA of diets fed to early lactation cows on:

- Lactational performance
- Acute phase response to an intramammary LPS challenge

Effects of Altering the Omega-6 to Omega-3 Ratio on Lactation Performance & Immune Response Materials and Methods

- 45 multiparous cows blocked by parity (2 vs. > 2) and milk yield between 6 and 10 DIM and, within each block, randomly assigned to 1 of 3 treatments
 - TMR with a ratio of n6:n3 FA of 4:1 R4
 - TMR with a ratio of n6:n3 FA of 5:1 R5
 - TMR with a ratio of n6:n3 FA of 6:1 R6
- The FA profile of diets was altered by incorporating Ca salts of fish oil (Strata), safflower oil (Prequel) and palm oil (EnerGII)
- Cows were fed a common diet for the first 14 DIM

Effects of Altering the Omega-6 to Omega-3 Ratio on Lactation Performance & Immune Response Materials and Methods

- Lactation performance evaluated from day 15 to 106 postpartum (13 weeks)
 - Cows were milked twice daily and no bST was used
 - Yields of milk, fat, protein and lactose measured daily and averaged weekly
 - BW was measured twice daily and averaged weekly

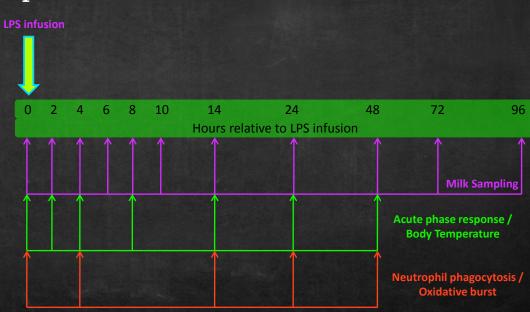
Effects of Altering the Omega-6 to Omega-3 Ratio on Lactation Performance & Immune Response Dietary Ingredients

Ingredients, % DM	R4	R ₅	R6
Corn Silage	18.7	18.7	18.7
Bermuda Grass Silage	9.0	9.0	9.0
Alfalfa Hay	6.1	6.1	6.1
Corn Grain, Finely Ground	13.8	13.8	13.8
Citrus Pulp	10.1	10.1	10.1
Soybean Hulls	20.3	20.3	20.3
Soybean Meal	10.1	10.1	10.1
Cooker-Processed SBM	5.7	5.7	5.7
Molasses	1.6	1.6	1.6
MinVit Premix	3.0	3.0	3.0
Ca Salts of Palm Oil	0.73	0.65	0.53
Ca Salts of Safflower Oil	0	0.37	0.70
Ca Salts of Fish Oil	0.70	0.41	0.20

Effects of Altering the Omega-6 to Omega-3 Ratio on Lactation Performance & Immune Response Chemical Composition of Diets

Nutrient Content, DM Basis (± SD)	R4	R5	R6
NE _L , ¹ Mcal/kg	1.62	1.62	1.62
CP, %	16.6 ± 0.8	16.6 ± 0.8	16.5 ± 0.8
Starch, %	17.3	17.3	17.3
Non-Fibrous Carbohydrates, %	35.4 ± 1.9	35.4 ± 2.0	35.5 ± 1.9
Acid Detergent Fiber, %	16.0 ± 0.9	15.9 ± 0.9	15.6 ± 0.9
Neutral Detergent Fiber, %	38.4 ± 2.3	38.4 ± 2.3	38.1 ± 2.3
NDF from Forage, %	17.1 ± 0.7	17.1 ± 0.7	17.1 ± 0.7
Fatty Acids, %	3.66 ± 0.15	3.82 ± 0.17	3.88 ± 0.16

¹ Estimated based on nutrient analysis of ingredients and adjusted for 24kg DM intake (NRC, 2001)


Effects of Altering the Omega-6 to Omega-3 Ratio on Lactation Performance & Immune Response Intramammary LPS Challenge

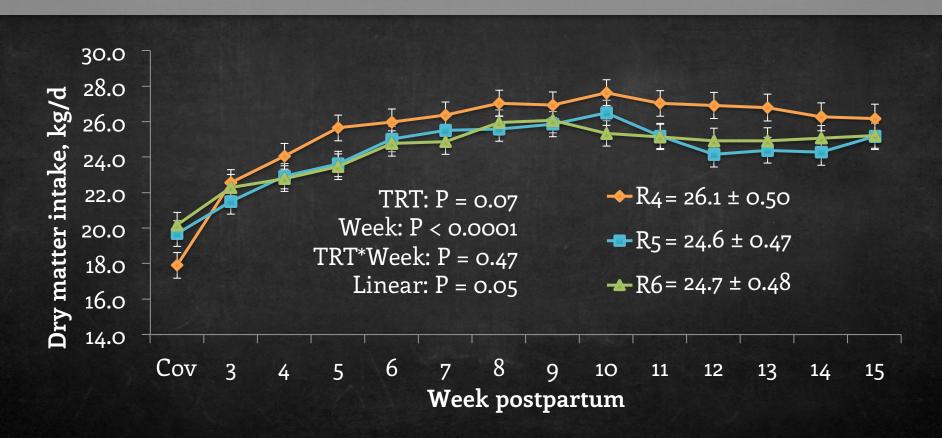
- On d 75 postpartum, cows with SCC < 300,000/mL in the preceding 10 d and negative CMT on the day of challenge were used (n = 39 cows).
- Approximately 3 h after the morning milking, 10 µg of LPS (E. coli O111:B4; Sigma) diluted in 10 mL of sterile PBS was infused via teat canal.
- Milk samples were collected at 0, 2, 4, 6, 8, 14, 24, 48, 72 and 96 h after the infusion.
 - Infused quarter
 - Composite of 3 non-infused quarters

Effects of Altering the Omega-6 to Omega-3 Ratio on Lactation Performance & Immune Response Intramammary LPS Challenge

- Blood was sampled multiple times
 - Acute phase proteins
 - Cytokines
 - Insulin, glucose
 - Neutrophil function
- Rectal temperature measured

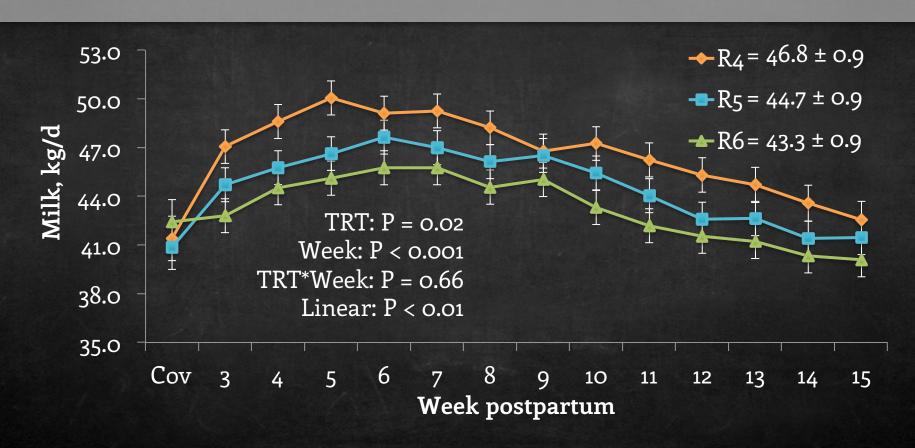
Effects of Altering the Omega-6 to Omega-3 Ratio on Lactation Performance & Immune Response Statistical Analyses

- Data were analyzed by the GLIMMIX procedure of SAS fitting either a normal or Poisson distribution
- Data were evaluated for normality of residuals and transformed if needed. Back-transformed values are presented.
- Repeated measures
 - Fixed effects: Pre-treatment covariate value + Treatment + Time + Treatment x Time
 - Random effect: Cow(Treatment)
- Orthogonal polynomial contrasts were used to test
 - Linear (R4 vs. R6)
 - Quadratic (R4+R6 vs. R5)

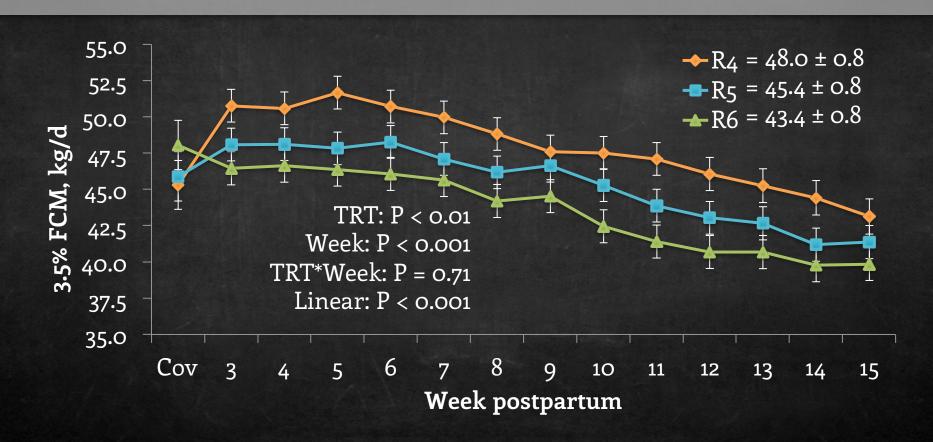


Effects of Altering the Omega-6 to Omega-3 Ratio on Lactation Performance & Immune Response Lactation Performance

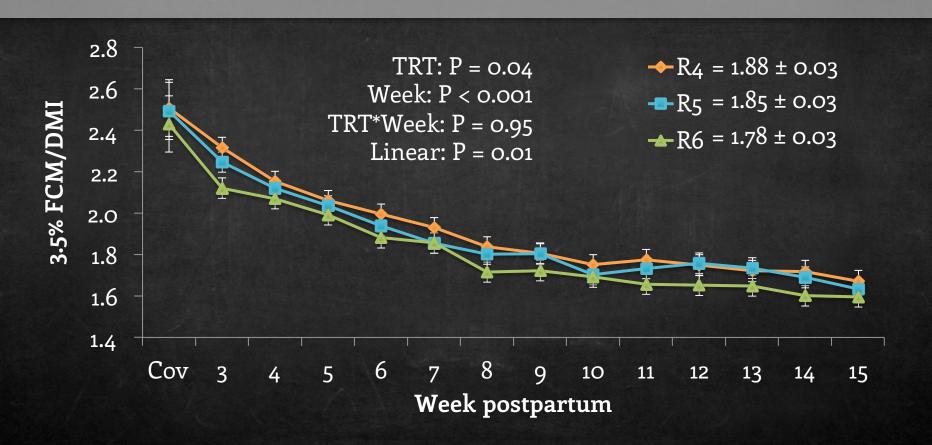
	Treatment ¹					P	
	R4	R5	R6	SEM	TRT	Lin	Quad
DM Intake, kg/d	26.1	24.6	24.7	0.5	0.07	0.05	0.17
Fatty Acid Intake³, g/d							
Linoleic	298.1	329.5	369.4	8.6	<0.01	<0.01	0.69
EPA + DHA	20.3	14.9	10.0	0.3	<0.01	<0.01	0.65
Total n-6	300.6	332.0	371.9	8.6	<0.01	<0.01	0.69
Total n-3	76.3	67.3	62.8	1.7	<0.01	<0.01	0.27
Ratio of n-6 to n-3	3.9	4.9	5.9				



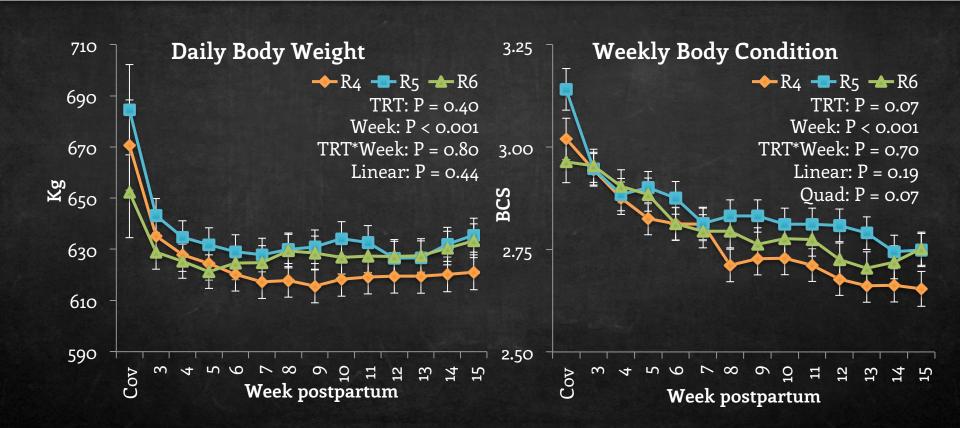
Effects of Altering the Omega-6 to Omega-3 Ratio on Lactation Performance & Immune Response DM Intake



Effects of Altering the Omega-6 to Omega-3 Ratio on Lactation Performance & Immune Response Milk Yield



Effects of Altering the Omega-6 to Omega-3 Ratio on Lactation Performance & Immune Response 3.5% FCM



Effects of Altering the Omega-6 to Omega-3 Ratio on Lactation Performance & Immune Response Feed Efficiency

Effects of Altering the Omega-6 to Omega-3 Ratio on Lactation Performance & Immune Response Body Weight and BCS

Effects of Altering the Omega-6 to Omega-3 Ratio on Lactation Performance & Immune Response Milk Composition

	Ratio n6:n3 FA in the Diet				P			
	R4	R ₅	R6	SEM	TRT	Wk	TRT*Wk	Linear
Milk Fat, %	3.64	3.58	3.55	0.05	0.42	<0.01	0.23	0.19
Milk Fat, kg/day	1.71	1.60	1.53	0.03	<0.01	<0.01	0.69	<0.01
True Protein, %	2.82	2.86	2.86	0.02	0.23	<0.01	0.99	0.13
True Protein, kg/day	1.32	1.28	1.24	0.02	0.03	<0.01	0.75	<0.01
Lactose, %	4.90	4.88	4.88	0.01	0.37	<0.01	0.82	0.23
Lactose, kg/day	2.29	2.19	2.12	0.04	0.01	<0.01	0.46	<0.01
Mcal/kg	0.69	0.69	0.68	0.01	0.68	<0.01	0.18	0.38
Mcal/day	32.3	30.8	29.5	0.6	<0.01	<0.01	0.74	<0.01

Effects of Altering the Omega-6 to Omega-3 Ratio on Lactation Performance & Immune Response Concentrations of Hormones & Metabolites in Plasma

		Treatment			P		
	R ₄	R5	R6	SEM	TRT	Lin	Quad
Glucose, mg/dL	65.7	67.5	66.1	1.1	0.46	0.81	0.22
Urea N, mg/dL	12.4	11.0	12.4	0.4	0.04	0.93	0.01
NEFA³, μM	310.8	256.7	247.9	22.5	0.10	0.06	0.46
BHBA ³ , mg/dL	6.51	6.34	6.11	0.47	0.83	0.55	0.94
Insulin, ng/mL	0.47	0.50	0.52	0.05	0.73	0.44	0.89
IGF-I³, ng/mL	35.7	37.0	36.5	1.9	0.88	0.75	0.69

Effects of Altering the Omega-6 to Omega-3 Ratio on Lactation Performance & Immune Response Plasma & Milk Fatty Acid Composition

		Treatment					
FA (g/100g)	R4	R5	R6	SEM	TRT	Lin	Quad
Plasma							
Total n-6	50.85	52.66	53.30	0.54	0.01	<0.01	0.38
Total n-3	7.09	5.46	4.76	0.34	<0.001	<0.001	0.27
n-6 to n-3 Ratio	7.60	9.84	11.33	0.40	<0.001	<0.001	0.45
Milk							
Total n-6	2.90	3.13	3.45	0.14	0.03	0.01	0.79
Total n-3	0.62	0.60	0.54	0.03	0.23	0.10	0.66
n-6 to n-3 Ratio	4.74	5.41	6.37	0.16	<0.001	<0.001	0.29

MOTTOPIC

Effects of Altering the Omega-6 to Omega-3 Ratio on Lactation Performance & Immune Response Body Temperature After a LPS Challenge

8.0

6.0

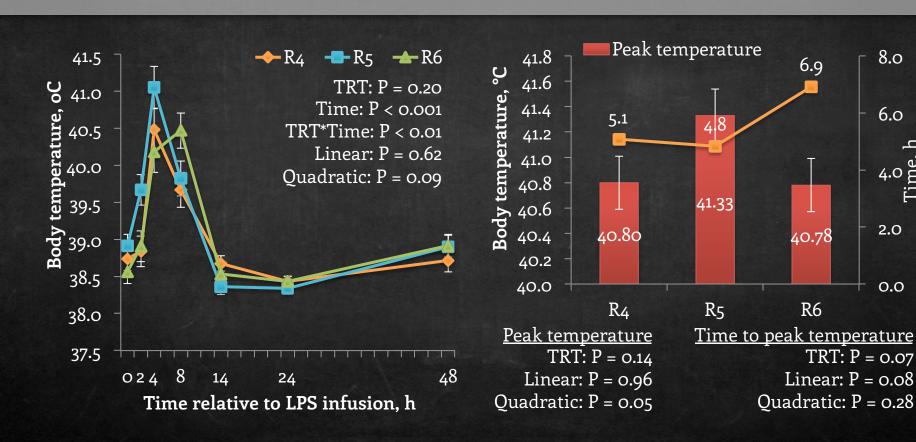
2.0

0.0

TRT: P = 0.07

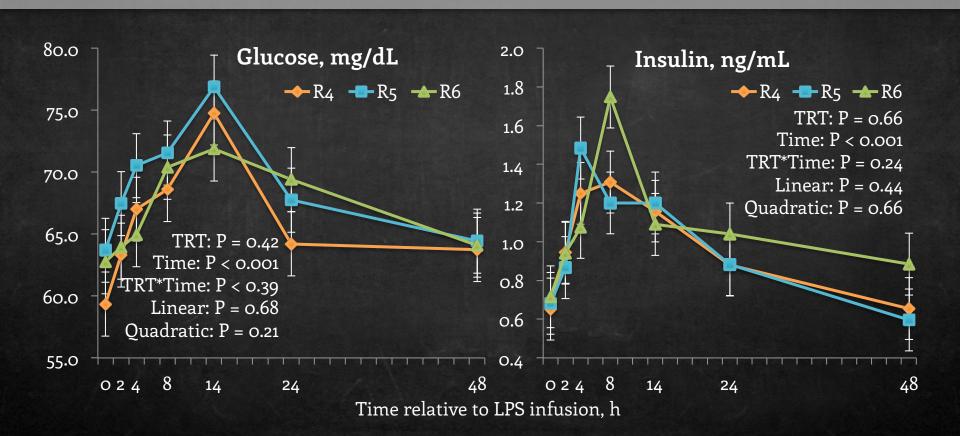
Linear: P = 0.08

Ouadratic: P = 0.28

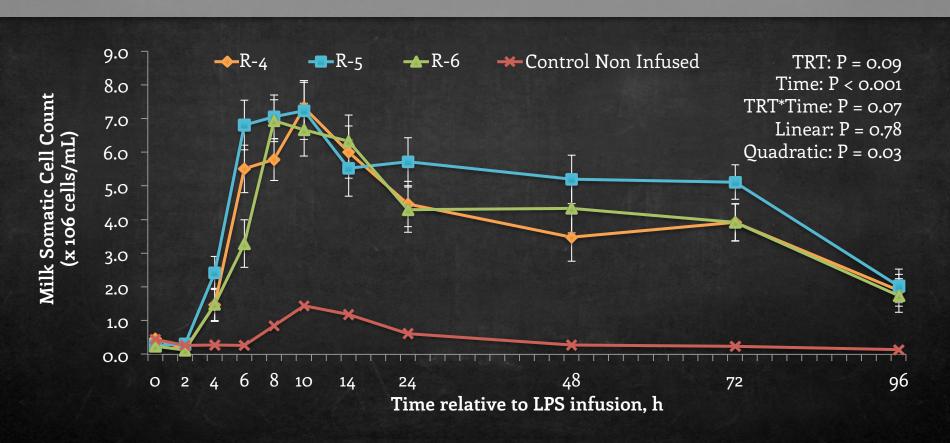

6.9

40.78

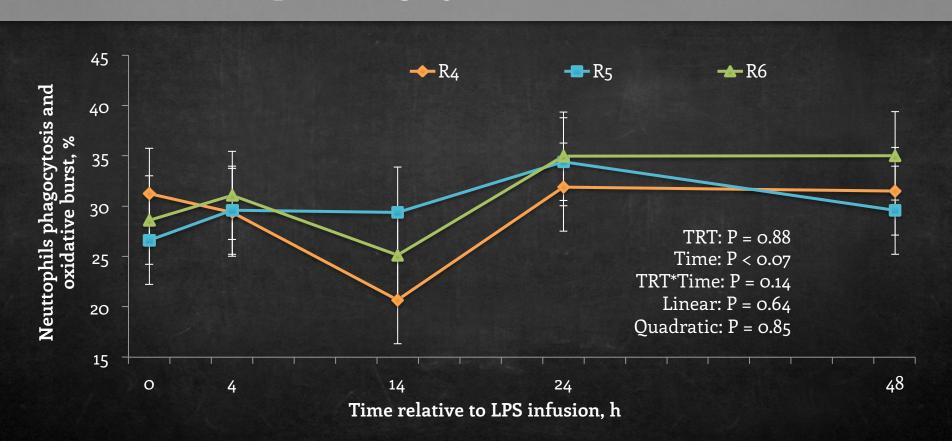
R6


4.8

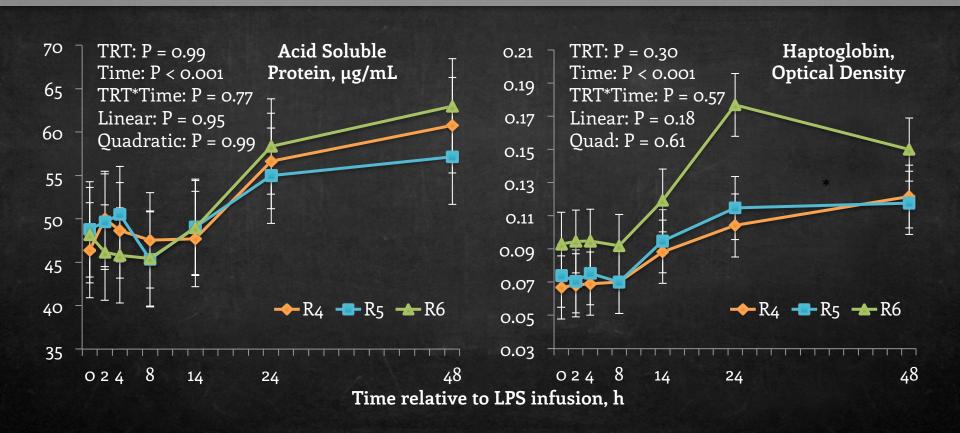
R5



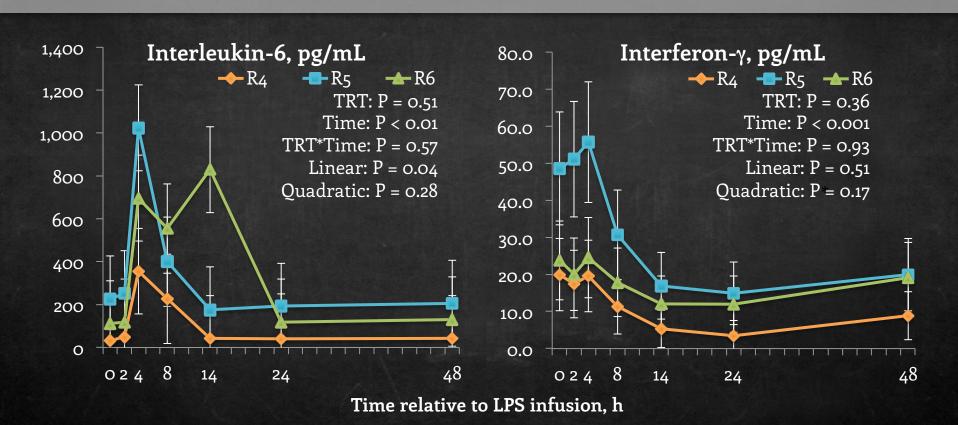
Effects of Altering the Omega-6 to Omega-3 Ratio on Lactation Performance & Immune Response Plasma Glucose and Insulin After a LPS Challenge



Effects of Altering the Omega-6 to Omega-3 Ratio on Lactation Performance & Immune Response Milk Somatic Cell Count After a LPS Challenge



Effects of Altering the Omega-6 to Omega-3 Ratio on Lactation Performance & Immune Response Neutrophils Phagocytosis and Oxidative Burst



Effects of Altering the Omega-6 to Omega-3 Ratio on Lactation Performance & Immune Response Plasma Acute Phase Proteins After a LPS Challenge

Effects of Altering the Omega-6 to Omega-3 Ratio on Lactation Performance & Immune Response Plasma Acute Phase Proteins After a LPS Challenge

MOTTOPIC

Effects of Altering the Omega-6 to Omega-3 Ratio on Lactation Performance & Immune Response Conclusions

Altering the FA profile of the diet fed to dairy cows by manipulating the n6 to n3 FA:

- Improved lactation performance;
 - Energetically, 1.3 kg of ECM could not be accounted for by the nutrient intake of cows when fed a diet in which EPA and DHA replaced linoleic acid
 - Efficiency of feed conversion into 3.5% FCM increased 5.6%
- Reducing the ratio of n6:n3 FA partially attenuated the acute inflammatory response to a LPS challenge
- R4 cows had the lowest SCC, haptoglobin, IL-6 and IFN- γ

Effects of Altering the Omega-6 to Omega-3 Ratio on Lactation Performance & Immune Response Ouestions & Answers

