

Pre- and Postpartum Nutritional Management TO OPTIMIZE ENERGY BALANCE AND FERTILITY IN DAIRY COWS

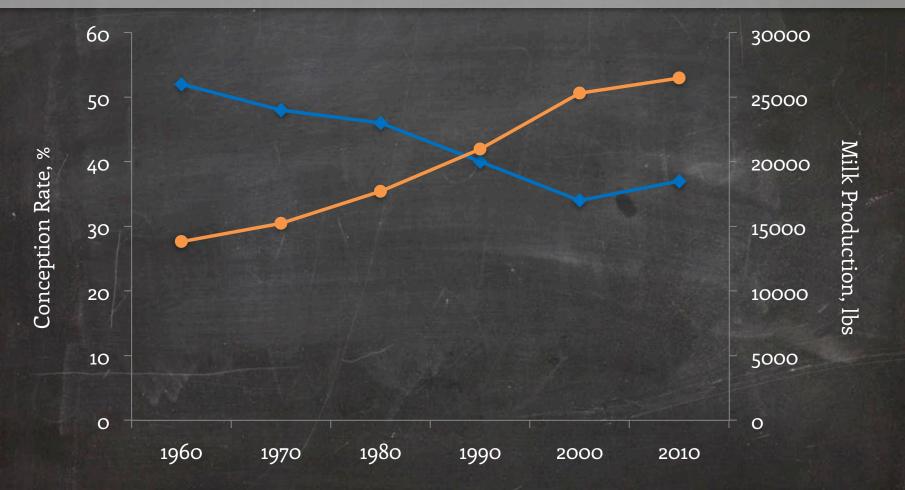
Phil Cardoso, DVM, MS, PhD Assistant Professor Department of Animal Sciences

LLINOIS

The Fatty Acid Forum sponsored by

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

SMART SOLUTIONS FOR INNOVATIVE DAIRIES



We should feed and manage dry and transition cows to: Minimize health disorders, Maximize production and reproduction

Pre- and Postpartum Nutritional Management Evolution of Milk Production and Reproduction in the Last 50 years

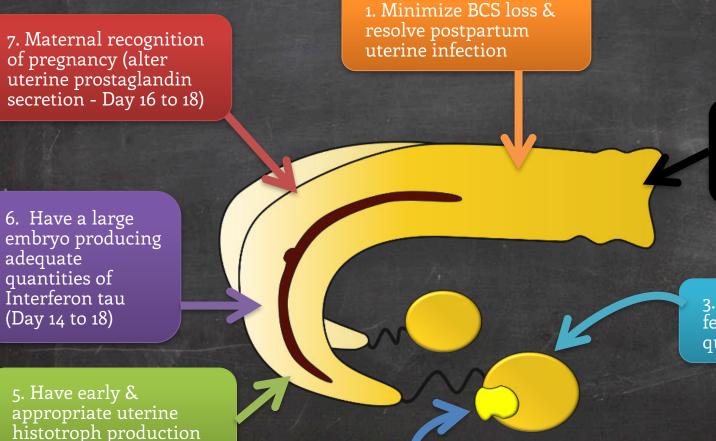
Walsh,S.W. et al., 2011

Pre- and Postpartum Nutritional Management Fertility and high milk production: Are they biologically compatible?

Quartile	Milk yield (kg/d)	Estrual cyclic. by d 65, %	Pregnant at d 30 post-AI, %	Pregnant at d 58 post-AI, %	Pregnancy loss d 30 to 58, %
1	32.1	72.7	37.2	30.3	12.7
2	39.1	77.6	38.9	29.8	11.6
3	43.6	77.6	39.3	33.7	12.8
4	50.0	75.3	37.6	35.3	15.6
Р		0.002	0.74	0.008	0.57

6,396 cows on 4 TMR-fed farms in California

Pre- and Postpartum Nutritional Management Reproduction: Early Embryonic Loss


Reference	Cows	Days 1 st Check	Days last Check	Days	Loss %	Loss/ Day %
Chebel et al., 2002a	195	28	42	14	17.9	1.28
Moreira et al., 2000a	139	27	45	18	20.7	1.15
Chebel et al., 2002b	1,503	31	45	14	13.2	0.94
Stevenson et al., 2000	203	28	45	17	15.8	0.93
Santos et al., 2002b	360	31	45	14	11.1	0.79
Santos et al., 2002a	220	27	41	14	10	0.71
Cerri et al., 2002	176	31	45	14	9.7	0.70
Juchem et al., 2002	167	28	39	11	11.4	1.03

Daily embryonic loss in the first 50 days of pregnancy = 0.9%

Santos et al., 2009

Pre- and Postpartum Nutritional Management Factors Affecting Pregnancy in Dairy Cows

2. Detect heat & inseminate at the correct time (Day o)

3. Ovulation & fertilization of a high quality oocyte (Day 1)

4. Have an early increase in P4 secretion (Day 3 to 7)

Walsh et al., 2011

(Day 6 to 13)

Pre- and Postpartum Nutritional Management Dietary Recommendations for Dry Cows

 NEL: Control energy intake at 14 to 16 Mcal daily [diet ~ 1.30 Mcal/kg (0.60 Mcal/lb) DM]

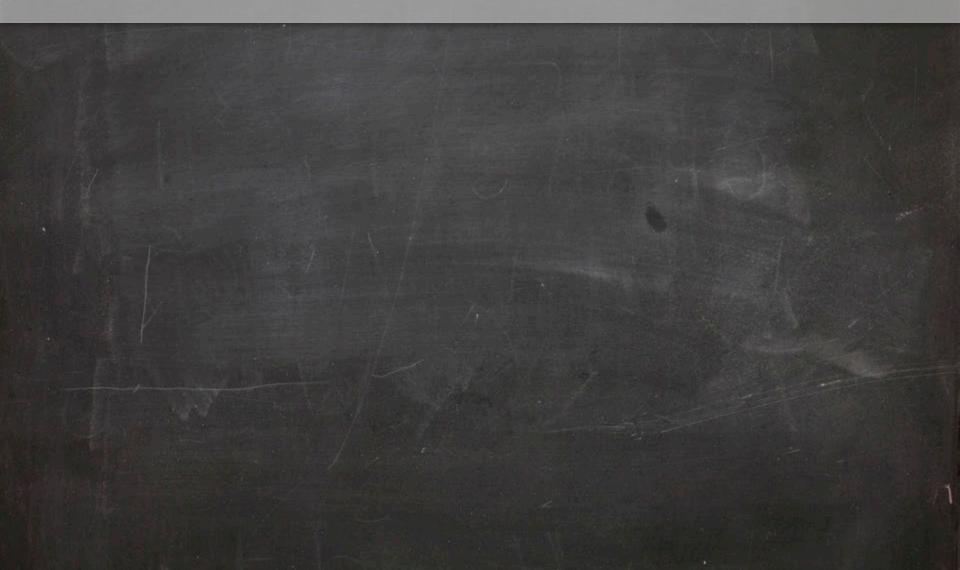
for mature cows

- Crude protein: 12 14% of DM
- Metabolizable protein (MP): > 1,200 g/d
- Starch content: 12 to 16% of DM
- NDF from forage: 40 to 50% of total DM or 4.5 to 5 kg per head daily (~0.7 – 0.8% of BW). Target the high end of the range if more higherenergy fiber sources (like grass hay or low-quality alfalfa) are used, and the low end of the range if straw is used (2-5kg).
- Total ration DM content: <55% (add water if necessary)
- Minerals and vitamins: follow guidelines (For close-ups, target values are 0.40% magnesium (minimum), 0.35 0.40% sulfur, potassium as low as possible, a DCAD of near zero or negative, 0.27% phosphorus, and at least 1,500 IU of vitamin E)

Pre- and Postpartum Nutritional Management Dietary Recommendations for Dry Cows

 NEL: Control energy intake at 14 to 16 Mcal daily [diet ~ 1.30 Mcal/kg (0.60 Mcal/lb) DM] for mature cows

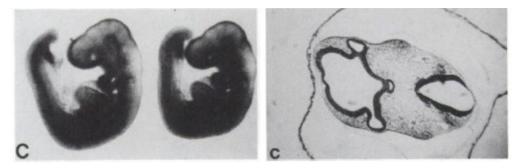
- Crude protein: 12 14% of DM
- Metabolizable protein (MP): > 1,200 g/d

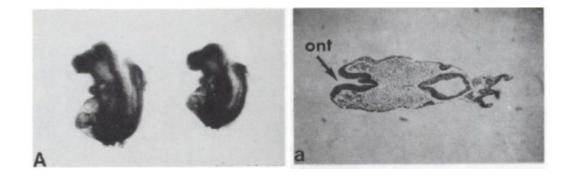


Methionine Lysine

- Starch content: 12 to 16% of DM
- NDF from forage: 40 to 50% of total DM or 4.5 to 5 kg per head daily (~0.7 – 0.8% of BW). Target the high end of the range if more higherenergy fiber sources (like grass hay or low-quality alfalfa) are used, and the low end of the range if straw is used (2-5kg).
- Total ration DM content: <55% (add water if necessary)
- Minerals and vitamins: follow guidelines (For close-ups, target values are 0.40% magnesium (minimum), 0.35 0.40% sulfur, potassium as low as possible, a DCAD of near zero or negative, 0.27% phosphorus, and at least 1,500 IU of vitamin E)

Pre- and Postpartum Nutritional Management Can Methionine Prevent Embryonic Losses?




Pre- and Postpartum Nutritional Management Can Methionine Prevent Embryonic Losses?

Whole Rat Embryos Require Methionine for Neural Tube Closure when Cultured on Cow Serum¹⁻⁴

CAROLINE N. D. COELHO, *†‡⁵ JAMES A. WEBER, *‡⁶ NORMAN W. KLEIN, *†‡⁷ WILLARD G. DANIELS,§ AND THOMAS A HOAGLAND†

Center for Environmental Health,* Department of Animal Science,† Department of Molecular and Cell Biology‡ and Department of Pathobiology,§ University of Connecticut, Storrs, CT 06269

low serum with:	Embryo Protein	% Abnormal
Ione	73.7 <u>+</u> 8.6 ^a	100%

Cow serum with:	Embryo Protein	% Abnormal
None	73.7 <u>+</u> 8.6 ^a	100%
Amino acids + vitamins	130.0 ± 7.7 ^b	0%

Cow serum with:	Embryo Protein	% Abnormal
None	73.7 <u>+</u> 8.6ª	100%
Amino acids + vitamins	130.0 <u>+</u> 7.7 ^b	0%
Amino acids	117.1 <u>+</u> 8.5 ^b	0%

Cow serum with:	Embryo Protein	% Abnormal
None	73.7 <u>+</u> 8.6 ^a	100%
Amino acids + vitamins	130.0 <u>+</u> 7.7 ^b	0%
Amino acids	117.1 <u>+</u> 8.5 ^b	0%
Vitamins	56.6 <u>+</u> 5.76ª	100%

Cow serum with:	Embryo Protein	% Abnormal
None	73.7 <u>+</u> 8.6 ^a	100%
Amino acids + vitamins	130.0 ± 7.7 ^b	0%
Amino acids	117.1 <u>+</u> 8.5 ^b	0%
Vitamins	56.6 <u>+</u> 5.76 ^a	100%
Amino acids w/o methionine	82.9 <u>+</u> 8.7ª	100%

Cow serum with:	Embryo Protein	% Abnormal
None	73.7 <u>+</u> 8.6 ^a	100%
Amino acids + vitamins	130.0 ± 7.7 ^b	0%
Amino acids	117.1 <u>+</u> 8.5 ^b	0%
Vitamins	56.6 <u>+</u> 5.76 ^a	100%
Amino acids w/o methionine	82.9 <u>+</u> 8.7 ^a	100%
Methionine	133.7 ± 5.5 ^b	0%

Cow serum with:	Embryo Protein	% Abnormal
None	73.7 <u>+</u> 8.6ª	100%
Amino acids + vitamins	130.0 <u>+</u> 7.7 ^b	0%
Amino acids	117.1 <u>+</u> 8.5 ^b	0%
Vitamins	56.6 <u>+</u> 5.76ª	100%
Amino acids w/o methionine	82.9 <u>+</u> 8.7 ^a	100%
Methionine	133.7 ± 5.5 ^b	0%

Pre- and Postpartum Nutritional Management Effects of Rumen-Protected Methionine/Choline Supplementation on the 1st Dominant Follicle

•72 Holstein cows entering 2nd or greater lactation Experimental design was a randomized block design Housed in tie stalls with sand bedding Milked 3x per day Fed same basal TMR to meet but not exceed 100% of the energy requirements as outlined by NRC, 2001 – From -34 d to calving: prepartum diet – From o to 30 DIM: fresh cow diet – From 31 to 72 DIM: high cow diet Treatments were given as top-dress

Pre- and Postpartum Nutritional Management Effects of Rumen-Protected Methionine or Choline Supplementation on the First Dominant Follicle

- Rumen-protected methionine (MET; n = 20, received 0.08% of the DM of the diet/d as methionine, Smartamine M[®], Adisseo, Alpharetta, GA, USA, to a Lys:Met = 2.9:1)
- Rumen-protected choline (CHO; n = 17, received 60 g/d choline, Reassure, Balchem Corporation, New Hampton, NY)
- 3. Both rumen protected methionine and choline (MIX; n = 19, received 0.08% of the DM of the diet/d as methionine to a Lys:Met = 2.9:1 and 60 g/d choline)
- 4. No supplementation to serve as control (CON; n = 16, fed TMR with a Lys:Met = 3.5:1

Acosta et al., 2016

Pre- and Postpartum Nutritional Management Diets

	Pre-Fresh -21 d to calving	Fresh Calving to 30 DIM	High 31 to 73 DIM
Ingredients		% DM	
Alfalfa silage	8.35	5.07	6.12
Alfalfa hay	4.29	2.98	6.94
Corn silage	36.40	33.41	35.09
Wheat straw	15.63	2.98	
Cottonseed	· · · · /	3.58	3.26
Wet brewers grain	4.29	9.09	8.16
Soy hulls	4.29	4.18	4.74
Concentrate mix	26.75	38.71	35.69

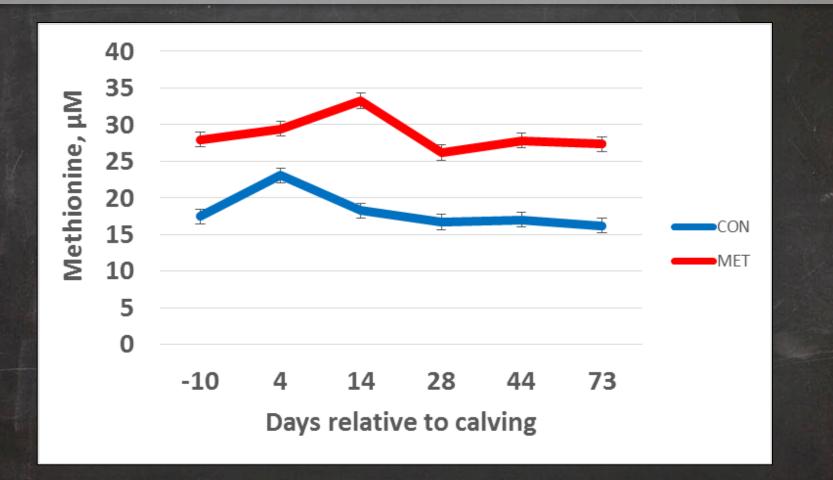
Acosta et al., 2016

Pre- and Postpartum Nutritional Management Diets; Chemical Composition

	Pre-Fresh -21 d to calving	Fresh Calving to 30 DIM	High 31 to 73 DIM
Item		% DM	
DM, %	47.1	47.9	47.1
CP, % of DM	18.0	17.6	18.3
ADF, % of DM	22.7	24.4	23.2
NDF, % of DM	35.6	37.3	36.3
Lignin, % of DM	4.53	4.00	3.80
Starch, % of DM	22.3	21.4	23.6
Crude fat, % of DM	5.23	4.70	4.57

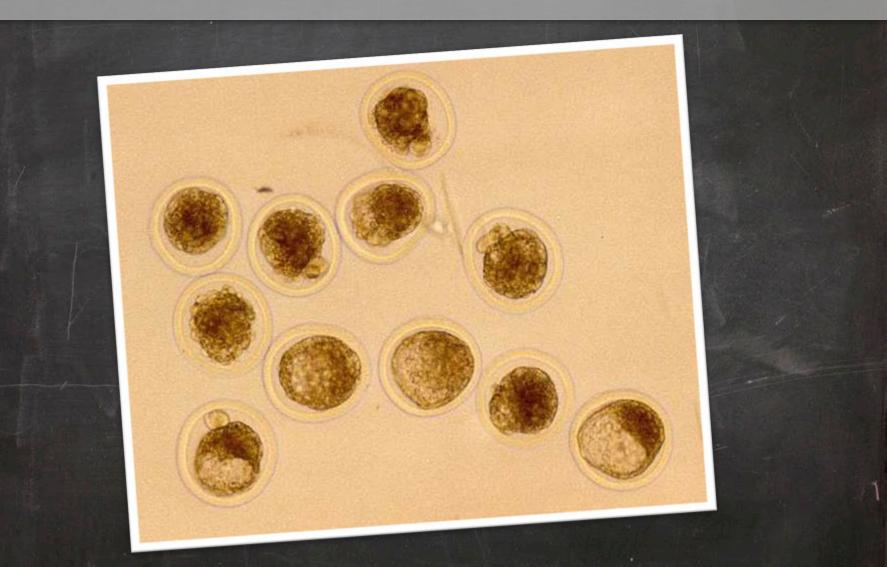
Pre- and Postpartum Nutritional Management Milk Yield and Components

			MET			<i>P</i> -va	alue		
	Parameter	With	Without	SEM	MET	Parity	Time	M×T	
	Milk composition (%	5)							
	Fat	3.72	3.74	0.11	0.92		<0.01	0.58	
	Protein	3.3 2 ^a	3.14 ^b	0.05	<0.01	-	<0.01	0.67	
	SCC	1.86	1.81	0.07	0.55	-	<0.01	0.85	
	Lactose	4.70	4.69	0.03	0.79	<0.01	<0.01	0.90	
	Total solids	12.65	12.39	0.12	0.13	Ri etar	<0.01	0.24	
	Other solids	5.62	5.60	0.03	0.58	<0.01	<0.01	0.82	
	MUN	12.80	12.94	0.30	0.75	-	0.50	0.92	
	Milk production								
	Milk yield	44.32 ^a	40.32 ^b	1.29	0.03		<0.01	0.60	
	Milk fat yield	1.67 ^a	1.53 ^b	0.05	0.04	-	<0.01	0.47	
	Milk protein yield	1.51 ^a	1.33 ^b	0.05	<0.01	-19	<0.01	0.73	
Zhou e	ECM 1t al., 2016	44.81 ^a	40.25 ^b	1.05	<0.01	-	<0.01	0.16	



Pre- and Postpartum Nutritional Management Milk Yield and Components

	· ·	MET			<i>P</i> -va	alue	S. A. S. M.
Parameter	With	Without	SEM	MET	Parity	Time	M×T
Milk composition (%	3)						
Fat	3.72	3.74	0.11	0.92	-	<0.01	0.58
Protein	3.3 2 ^a	3.14 ^b	0.05	<0.01		<0.01	0.67
SCC	1.86	1.81	0.07	0.55	-	<0.01	0.85
Lactose	4.70	4.69	0.03	0.79	<0.01	<0.01	0.90
Total solids	12.65	12.39	0.12	0.13		<0.01	0.24
Other solids	5.62	5.60	0.03	0.58	<0.01	<0.01	0.82
MUN	12.80	12.94	0.30	0.75	-	0.50	0.92
Milk production							
Milk yield	44.3 2 ^a	40.32 ^b	1.29	0.03	-	<0.01	0.60
Milk fat yield	1.67 ^a	1.53 ^b	0.05	0.04		<0.01	0.47
Milk protein yield	1.51 ^a	1.33 ^b	0.05	<0.01	L. Star	<0.01	0.73
ECM	44.81 ^a	40.25 ^b	1.05	<0.01		<0.01	0.16
Zhou et al., 2016		- 17 BOT 10	N 78 1985				


Pre- and Postpartum Nutritional Management Serum Methionine Concentration from Cows Fed rumen-protected methionine (MET) or not (CON)

Stella et al., unpublished

Control: n = 7; Methionine: n = 10

Theriogenology 85 (2016) 1669-1679

Contents lists available at ScienceDirect

Theriogenology

journal homepage: www.theriojournal.com

Effects of rumen-protected methionine and choline supplementation on the preimplantation embryo in Holstein cows

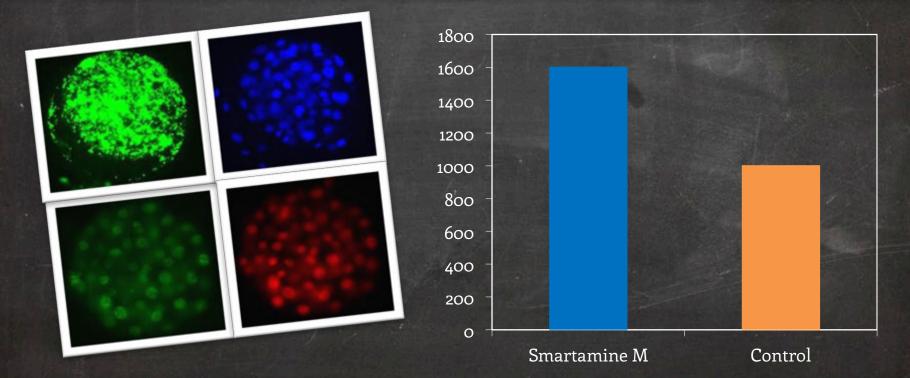
THERIOGENO

D.A.V. Acosta^{a,b}, A.C. Denicol^{c,d}, P. Tribulo^d, M.I. Rivelli^a, C. Skenandore^a, Z. Zhou^a, D. Luchini^e, M.N. Corrêa^b, P.J. Hansen^d, F.C. Cardoso^{a,*}

^b Faculty of Veterinary Medicine, Department of Clinics, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil

^c Department of Biology, Northeastern University, Boston, Massachussets, USA

^d Department of Animal Science, University of Florida, Gainesville, Florida, USA


^e Adisseo NACA, Alpharetta, Georgia, USA

^a Department of Animal Sciences, University of Illinois, Urbana, Illinois, USA

Pre- and Postpartum Nutritional Management Effect of Methionine Supplementation from -21 DIM to 72 DIM on Lipid Accumulation of Preimplantation Embryos

Embryos (n= 37) harvested 7 d after timed AI at 63 DIM from cows fed a control diet or the control diet enriched with rumen-protected methionine.

Fluorescence intensity of Nike Red staining

Acosta et al., 2016

OPEN 3 ACCESS Freely available online

PLOS ONE

Effect of Maternal Methionine Supplementation on the Transcriptome of Bovine Preimplantation Embryos

Francisco Peñagaricano¹, Alex H. Souza², Paulo D. Carvalho², Ashley M. Driver¹, Rocio Gambra¹, Jenna Kropp¹, Katherine S. Hackbart², Daniel Luchini³, Randy D. Shaver², Milo C. Wiltbank²*, Hasan Khatib¹*

1 Department of Animal Sciences, University of Wisconsin, Madison, Wisconsin, United States of America, 2 Department of Dairy Science, University of Wisconsin, Madison, Wisconsin, United States of America, 3 Adisseo USA Inc., Alpharetta, Georgia, United States of America

OPEN O ACCESS Freely availal

Effect of Ma Transcripton

Francisco Peñagarican Jenna Kropp¹, Katheri Hasan Khatib¹*

1 Department of Animal Sciences, Un Wisconsin, United States of America,

Penagaricano et al., 2013

Table 3. Top 30 most significant genes that showed differential expression between control and methionine-rich treatment.

Gene	Name	log2 FC	FDR
LAPTMS	Lysosomal protein transmembrane 5	-14.9	4.7×10 ⁻⁹
NKG7	Natural killer cell group 7 sequence	- 13.6	4.4×10 ⁻⁸
VIM	Vimentin	-13.8	1.8×10 ⁻⁷
TYROBP	TYRO protein tyrosine kinase binding protein	-13.2	3.2×10 ⁻⁶
F16	Interferon, alpha-inducible protein 6	-12.6	1.5×10 ⁻⁵
CUFF.2147.1	Novel transcript unit	-8.2	1.5×10 ⁻⁵
LOC505451	Olfactory receptor, family 1, subfamily J, member 2-like	- 13.0	1.5×10 ⁻⁵
SLAME7	Signaling lymphocyte-activating molecule family 7 family member 7	- 10.4	3.5×10 ⁻⁵
LOC788199	Olfactory receptor 6C74-like	- 10.4	7.6×10 ⁻⁵
LCP1	Lymphocyte cytosolic protein 1 (L-plastin)	-9.9	1.1×10 ⁻⁴
LOC100849660	Uncharacterized	11.9	2.2×10 ⁻⁴
BLA-DQB	MHC class II antigen	-11.1	2.2×10 ⁻⁴
SHC2	SHC (Src homology 2 domain containing) transforming protein 2	-115	3.4×10 ⁻⁴
NTSC3	5'-nucleotidase, cytosolic III	-115	3.5×10 ⁻⁴
OC510193	Apolipoprotein L, 3-like	7.8	4.3×10 ⁻⁴
OC100848815	SLA class II histocompatibility antigen, DQ haplotype D alpha chain-like	-11.4	4.3×10 ⁻⁴
CUFF.606.1	Novel transcript unit	- 5.6	4.3×10 ⁻⁴
LOC100850656	Uncharacterized	-112	4.8×10 ⁻⁴
SLC11A1	Solute carrier family 11 (proton-coupled divalent metal ion transporters), member 1	- 10.7	6.9×10 ⁻⁴
OC100852347	Beta-defensin 10-like	-112	7.3×10 ⁻⁴
LOC100297676	C-type lectin domain family 2 member G-like	- 6.8	9.2×10 ⁻⁴
BCL2A1	BCL2-related protein A1	-7.1	1.2×10 ⁻³
NSR	Insulin receptor	- 5.1	1.3×10 ⁻³
NOVA1	Neuro-oncological ventral antigen 1	- 10.6	1.5×10 ⁻³
TBX15	T-box 15	-112	2.2×10 ⁻³
TMEM200C	Transmembrane protein 200C	-6.6	2.2×10 ⁻³
GPNMB	Glycoprotein (transmembrane) nmb	-7.5	2.3×10 ⁻³
ARHGAP9	Rho GTPase activating protein 9	- 5.7	2.7×10 ⁻³
EIF4E1B	Eukaryotic translation initiation factor 4E family member 1B	-113	3.1×10 ⁻³
LOC100295170	Protein 8EX2-like	-9.3	3.5×10 ⁻³

ONE

е

adison,

A negative log2 Fold Change (FC) value means that the gene showed higher expression in control treatment while a positive value means that the gene showed higher expression in methionine-rich treatment... doi:10.1371/iournal.come.0072302.1003

Table 3. Top 30 most significant genes that showed differential expression between control and methionine-rich treatment.

ONE

1.5×10-3

2.2×10-3

2.2×10⁻³

2.3×10⁻³ 2.7×10⁻³

3.1×10-3

3.5×10⁻³

-10.6

-112

-6.6

-7.5

-5.7

-113

OPEN O ACCESS Freely availal

Effect of Ma Transcripton

Francisco Peñagarican Jenna Kropp¹, Katheri Hasan Khatib¹*

Uncharact

Apolipopr

NOVA1

TBX15

TMEM200C GPNMB

ARHGAP9

EIF4E1B

LOC100295170

LOC100849660

LOC510193

Gene	Name	log2 FC	FDR	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
LAPTMS	Lysosomal protein transmembrane 5	-14.9	4.7×10 ⁻⁹	
NKG7	Natural killer cell group 7 sequence	- 13.6	4.4×10 ⁻⁸	0
VIM	Vimentin	-13.8	1.8×10 ⁻⁷	~
TYROBP	TYRO protein tyrosine kinase binding protein	-13.2	3.2×10 ⁻⁶	
IFI6	Interferon, alpha-inducible protein 6	-12.6	1.5×10 ⁻⁵	
CUFF.2147.1	Novel transcript unit	-8.2	1.5×10 ⁻⁵	
LOC505451	Olfactory receptor, family 1, subfamily J, member 2-like	- 13.0	1.5×10 ⁻⁵	
SLAMF7	Signaling lymphocyte-activating molecule family 7 family member 7	- 10.4	3.5×10 ⁻⁵	
LOC788199	Olfactory receptor 6C74-like	- 10.4	7.6×10 ⁻⁵	
LCP1	Lymphocyte cytosolic protein 1 (L-plastin)	-9.9	1.1×10 ⁻⁴	
LOC100849660	Uncharacterized	11.9	2.2×10 ⁻⁴	
BLA-DQB	MHC class II antigen	-11.1	2.2×10 ⁻⁴	
terized		11.9		2.2×10 ⁻⁴
rotein L, 3-like		7.8		4.3×10 ⁻⁴
CUFF.606.1	Novel transcript unit	-5.6	4.3×10 ⁻⁴	
LOC100850656	Uncharacterized	-112	4.8×10 ⁻⁴	
SLC11A1	Solute carrier family 11 (proton-coupled divalent metal ion transporters), member 1	- 10.7	6.9×10 ⁻⁴	
LOC100852347	Beta-defensin 10-like	-112	7.3×10 ⁻⁴	
LOC100297676	C-type lectin domain family 2 member G-like	- 6.8	9.2×10 ⁻⁴	
BCL2A1	BCL2-related protein A1	-7.1	1.2×10 ⁻³	
INSR	Insulin receptor	-5.1	1.3×10 ⁻³	

Penagaricano et al., 2013

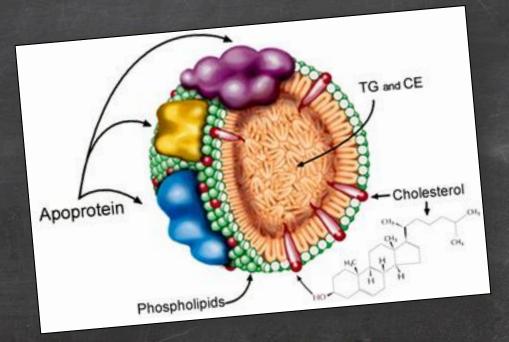
A negative log2 Fold Change (FC) value means that the gene showed higher expression in control treatment while a positive value means that the gene showed higher expression in methionine-rich treatment... doi:10.1371/iournal.come.0072302.1003

Neuro-oncological ventral antigen 1

Glycoprotein (transmembrane) nmb

Eukaryotic translation initiation factor 4E family member 1B

Rho GTPase activating protein 9


Transmembrane protein 200C

T-box 15

Protein BEX2-like

Pre- and Postpartum Nutritional Management

Apolipoproteins are involved in the transport and metabolism of lipids, including cholesterol, and allow the binding of lipids to organelles

Methionine influences lipid metabolism in the preimplantation embryo

Penagaricano et al., 2013

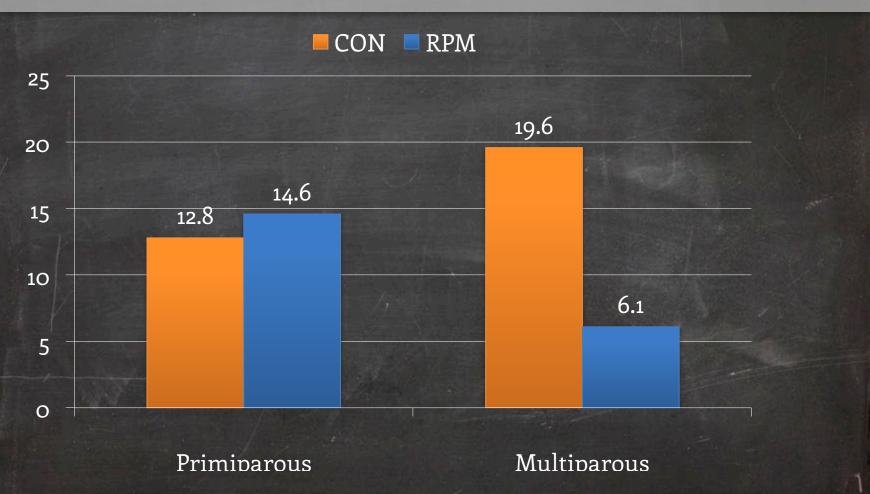
Pre- and Postpartum Nutritional Management Effect of Supplementation with Smartamine M on Reproduction of Lactating Dairy Cows

Cows were fed a basal TMR (6.9% Lys of MP and 1.87% Met of MP) from 30 ± 2 to 128 ± 2 DIM and assigned to two treatments: RPM: Basal TMR top dressed daily with Smartamine M CON: Basal diet top dressed daily with DDG

Pre- and Postpartum Nutritional Management Effect of Supplementation with Smartamine M on Reproduction of Lactating Dairy Cows

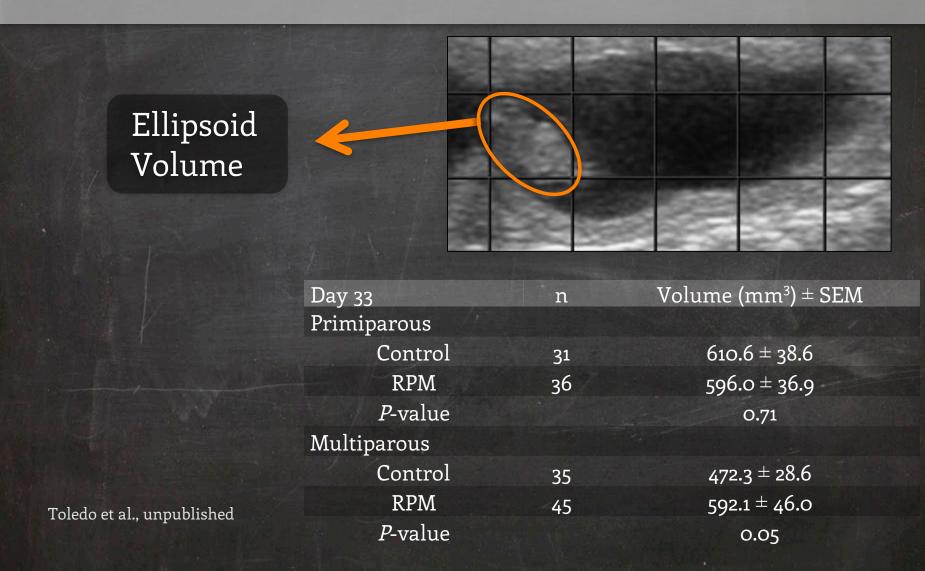
RPM cows were top dressed with 50 g (29 g of DDG and 21 g of Smartamine M) **CON** cows were top dressed with 50 g of DDG

RPM



Pre- and Postpartum Nutritional Management Animals

	CONTROL	RPM	TOTAL
Primiparous	68	70	138
Multiparous	85	86	171
TOTAL	153	156	309


Pre- an Postpartum Nutritional Management Pregnancy Losses (%) from 28 to 61 days after AI

Toledo et al., unpublished

Pre- and Postpartum Nutritional Management Amniotic Vesicle Size

Is Embryo Lipid Composition (▲) Associated with Lower Embryonic Death in Dairy Cows?

Pre- and Postpartum Nutritional Management Summary

- Rumen-protected methionine increased methionine concentration in serum and follicular fluid of dairy cows.
- The cow's pregnancy success starts during the transition phase.
- Amino acid balancing (methionine) from pre-fresh to confirmed pregnancy may not only improve milk production and composition, it may also improve embryo quality and reduce early embryo losses.

SMART SOLUTIONS FOR INNOVATIVE DAIRIES