

THE ESSENTIAL FATTY ACIDS Is There Evidence of Essential Fatty Acid Deficiency/Benefit in Dairy Animals?

Charlie Staples, Professor Department of Animal Sciences

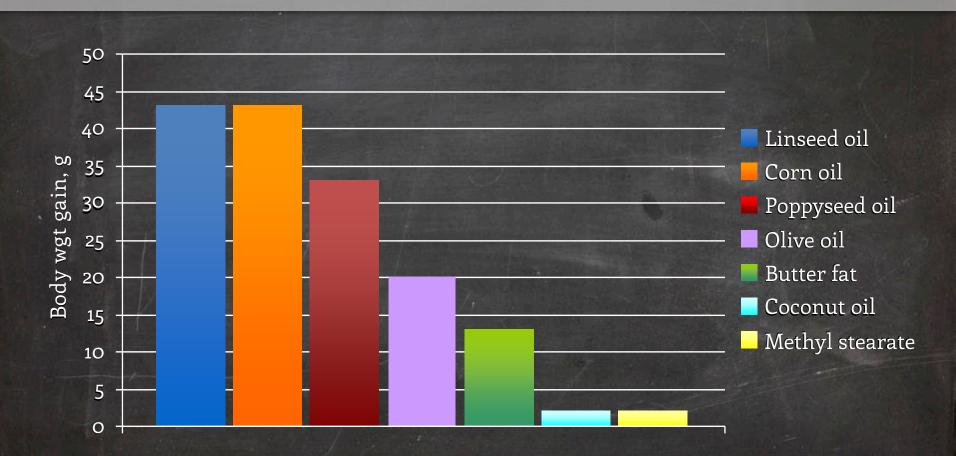
UNIVERSITY of FLORIDA IFAS Extension

The Fatty Acid Forum sponsored by

SMART SOLUTIONS FOR INNOVATIVE DAIRIES

THE ESSENTIAL FATTY ACIDS Essential Fatty Acids – Deficiencies?

Gross deficiencies – symptoms?
Marginal deficiencies – symptoms?


THE ESSENTIAL FATTY ACIDS Gross Deficiencies of Feeding Fat-Free Diets to Nonruminants

• Rats were fed a fat-free diet...

- Reduced growth (but diets were not isocaloric)
- Skin lesions, hair loss, and inflamed tail and feet at 70 to 90 days of life
- Death at ~150 days of life, likely due to kidney failure
- Irregular ovulation intervals
- Anovulatory rats resumed ovulation within 5 days of fat intake
- Feeding fat at 1% of diet alleviated symptoms

THE ESSENTIAL FATTY ACIDS 40 Day Gain of Rats Fed Fat-free Diets Resupplemented With Fat

THE ESSENTIAL FATTY ACIDS Linoleic and Linolenic Acids Act Synergistically

Female rats were fed a fat-free diet for 10 weeks; then fed increasing amounts of essential fatty acids during pregnancy and lactation.

	C18:2	C18:3	C18:2+C18:3	C18:2	C18:3
Intake of fatty acids, g/d	20	20	20 + 20	40	40
Number of pups born per litter	9.7	9.3	10.1	8.7	9.5
Pup mortality at 3 days of life, %	41	88	5	20	35

THE ESSENTIAL FATTY ACIDS Gross Deficiencies of Feeding Fat-Free Diets to Unweaned Ruminants

	Lambert et al., J. Nutr. 52:259		Cunningham & Loosli, JAS 13:265			
	Preweaned d	Preweaned dairy heifers		Preweaned lambs		
	Fat-free synthetic milk replacer	Synthetic milk replacer + 1.8% hydrogenated soybean oil & lecithin	Fat-free synthetic milk replacer	Synthetic milk replacer + 2% lard		
Body wt. gain	88 g / day	246 g / day	33 g / day	123 g / day		
Symptoms	Scaly dandruff, dry hair, loss of hair	Healthy	Died in 3 to 7 weeks	Healthy		

THE ESSENTIAL FATTY ACIDS Response of Unweaned Holstein Calves to Supplemental EFA in Milk Replacer During the First 30 Days of Life

Reference	Changing intake of C18:2 (g/day)	Changing intake of C18:3 (g/day)	Response to increased intake of EFA
Garcia et al., JDS 97:5045	2.4 to 8.0	o to 0.7	Increased ADG
Garcia et al., JDS 98 (in print)	1.9 to 9.3	0.1 to 1.2	Increased ADG

THE ESSENTIAL FATTY ACIDS Supplementation of Essential Fatty Acids Has Improved Reproductive Performance of Adult Cows

- Increased size of dominant ovarian follicle and corpus luteum (Staples et al., JDS 81:856)
- Improved conception rate (Cerri et al., JDS 92:1520) 92:1520–1531
- Reduced loss of embryos (Ambrose et al., JDS 89:3066; Silvestre et al., JDS 94:189)

THE ESSENTIAL FATTY ACIDS Performance of Dairy Cows Fed Changing Ratios of Essential Fatty Acids

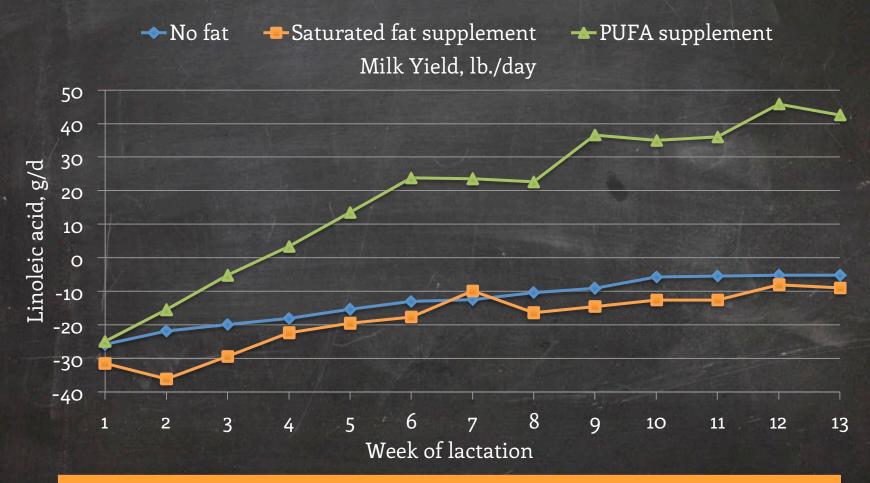
	Dietary Ratio of Omega-6 to Omega-3 Fatty Acids			
	6:1	5:1	4:1	
DM intake, kg/day	24.7 ^a	24.6 ^a	26.1 ^b	
Milk, kg/day	43.2 ^a	44.8 ^a	46.8 ^b	

Diet of 3.7% fatty acids

Greco et al., J. Dairy Sci, in press

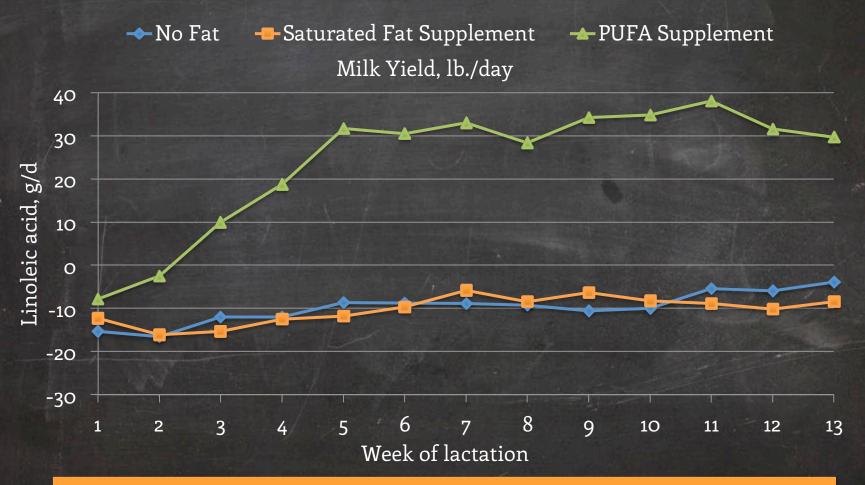
THE ESSENTIAL FATTY ACIDS Feeding Low Linoleic Acid Diets to Lactating Cows

- Pre and postpartum diets were formulated to be as low as possible in linoleic acid while containing reasonable ingredients.
- Ingredients used were barley grain, peanut meal, citrus pulp, bermuda grass silage, and alfalfa hay (very little corn silage).
 - Diets fed 4 weeks prior to calving and 13 weeks postpartum.
 - Measured EFA in diets and milk fat.

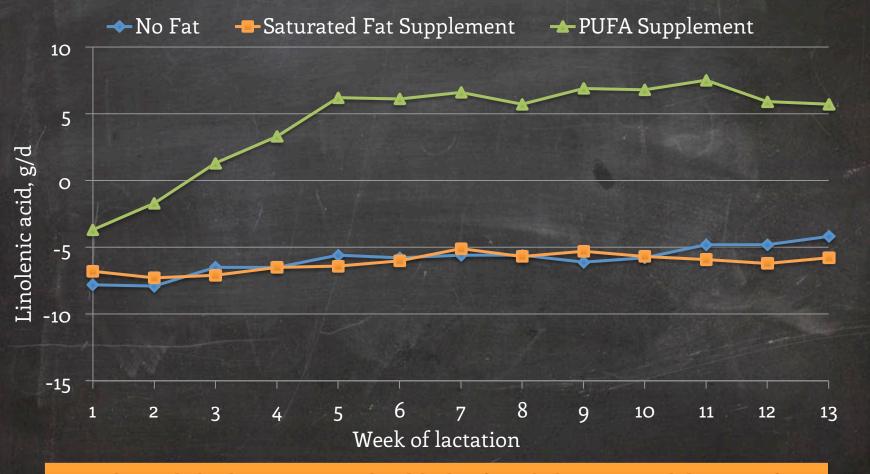


THE ESSENTIAL FATTY ACIDS Dietary Concentrations of EFA

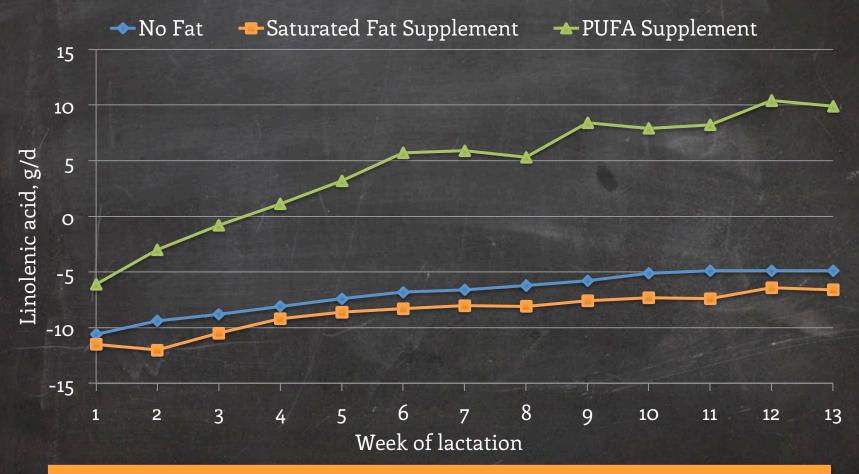
	Florida Study	Typical TMR ¹
Linoleic acid, % of diet DM	0.60	1.14
Linolenic acid, % of diet DM	0.29	0.26
¹ Average of 6 studies from 2012 J. Dairy Sci.		



THE ESSENTIAL FATTY ACIDS Linoleic Acid (C18:2) "Balance" of Multiparous Cows Fed Low C18:2 Diets With and Without Supplemental Fat



THE ESSENTIAL FATTY ACIDS Linoleic Acid (C18:2) "Balance" of Primiparous Cows Fed Low C18:2 Diets With and Without Supplemental Fat

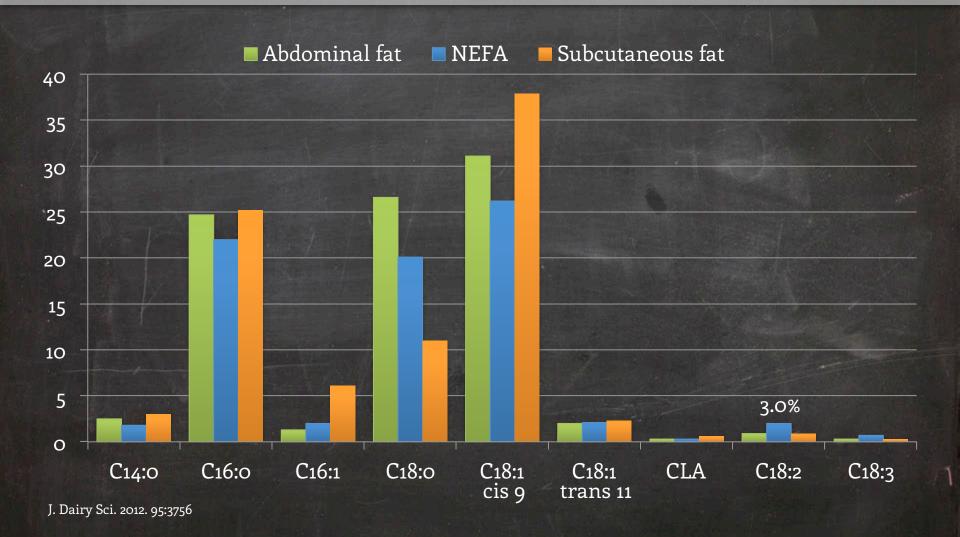


THE ESSENTIAL FATTY ACIDS Linolenic Acid (C18:3) "Balance" of Multiparous Cows Fed Diets With and Without Supplemental Fat

THE ESSENTIAL FATTY ACIDS Linolenic Acid (C18:3) "Balance" of Primiparous Cows Fed Diets With & Without Supplemental Fat

THE ESSENTIAL FATTY ACIDS Why Not Greater Evidence of EFA Deficiencies?

Body reserves may supply C18:2 during times of C18:2 deficiencies.

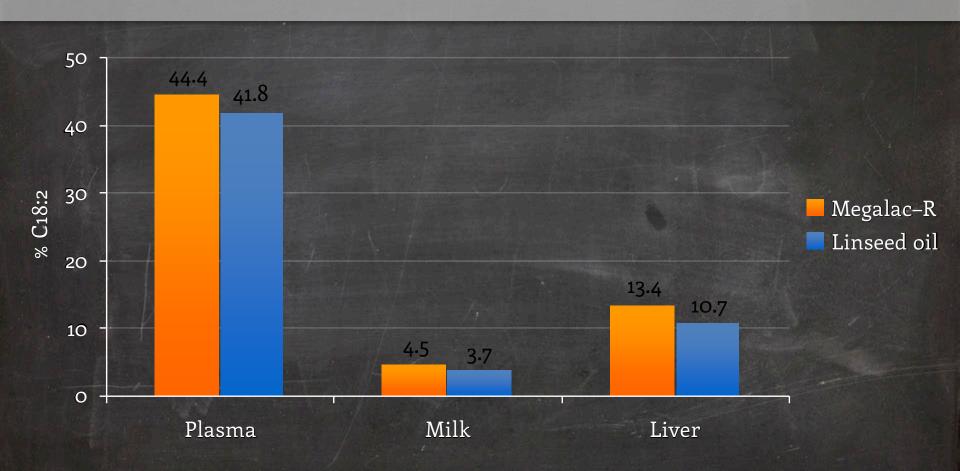


THE ESSENTIAL FATTY ACIDS Tissue Storage of Essential Fatty Acids

	Total fat, %	C18:2 % of FA	C18:3, % of FA	C18:2, g	C18:3, g
Internal adipose	74	2	0.2	756	76
Subcutaneous fat	74	2	0.1	290	15
Muscle	7	11	0.4	518	19
Mammary	26	5	0.3	78	5
Liver	12	12	0.4	29	1
Endometrium	4	13	0.9	5	1
Total				1676	112

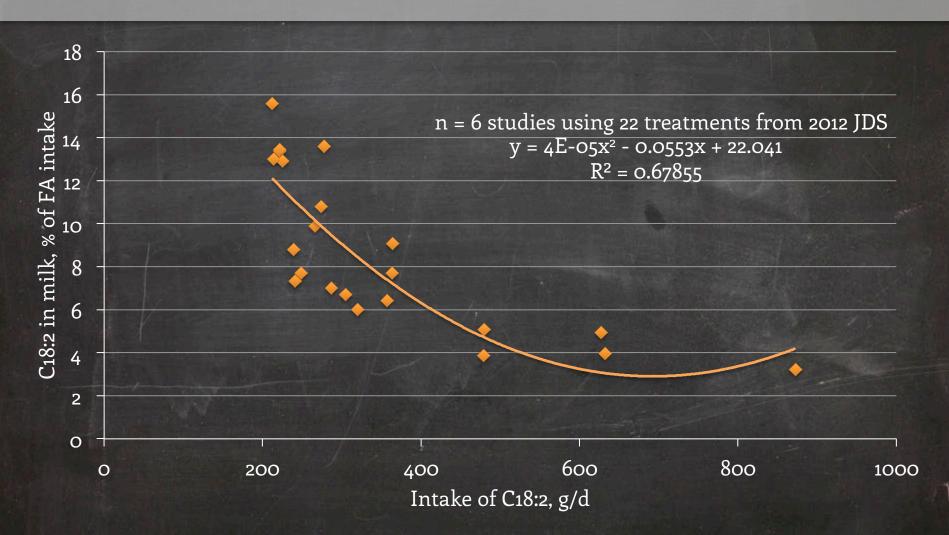
THE ESSENTIAL FATTY ACIDS Fatty Acid Profile of Body Fat Stores

THE ESSENTIAL FATTY ACIDS Concentration of Fatty Acids in Retroperitoneal Adipose Tissues in Fed and Fasted Rats



THE ESSENTIAL FATTY ACIDS Why Not Greater Evidence of EFA Deficiencies?

- Tissues, including the mammary gland, may "adjust" uptake of C18:2 based upon C18:2 supply.
- Is there a "bottom line" or minimum intake of C18:2 that must be met to secure normal performance?



THE ESSENTIAL FATTY ACIDS Linoleic Acid in Plasma, Milk, and Liver of Dairy Cows Fed Omega-6 or Omega-3 Fat Supplements

THE ESSENTIAL FATTY ACIDS Transfer Efficiency of C18:2 from Diet to Milk

THE ESSENTIAL FATTY ACIDS Examples of Diets Supplying C18:2 at ~500 g/d

Ingredient	Example 1	Example 2	Example 3	
Alfalfa hay/silage	16	35	32	
Corn silage	33	18	10	
Corn ground	25	11	20	
Soybean meal etc.	13	8	7	
Soyhulls/byproducts	5	23	12	
Animal-Vegetable blend	5			
High linoleic sunflower oil		1.9		
Whole cottonseed			15	
Mineral/Vitamin mix	3	2	4	
DMI of 23 kg/day × 2.2% C18:2 (DM basis) = 500 g/day intake of C18:2				

THE ESSENTIAL FATTY ACIDS C18:2 Recommendation for Lactating Cows?

- A 1450 lb dairy cow producing 90 lb of milk requires ~11 g/day of C18:2 for maintenance (based upon rodent research)
- This 11 g/day required for maintenance plus 30 g/ day required in milk fat = 41 g of C18:2 per day required for absorption
- Transfer efficiency from gut to milk is ~70%, thus requiring the delivery of 59 g/day of C18:2 to the lower gut (41 g ÷ 0.7 = 59 g)
- If ruminal biohydrogenation is 85%, then required intake is 390 g/day (59 g ÷ 0.15 = 390 g)
- Average intake of C18:2 is ~250 g/day for a lactating cow without fat supplements

THE ESSENTIAL FATTY ACIDS Is There Evidence of Essential Fatty Acid Deficiency/Benefit in Dairy Animals?

Charlie Staples, Professor Department of Animal Sciences

UNIVERSITY of FLORIDA IFAS Extension

The Fatty Acid Forum sponsored by

SMART SOLUTIONS FOR INNOVATIVE DAIRIES